File size: 4,731 Bytes
5bb42f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
from pathlib import Path

from torch import version as torch_version

from modules import shared
from modules.logging_colors import logger
from modules.text_generation import get_max_prompt_length

try:
    from exllama.generator import ExLlamaGenerator
    from exllama.model import ExLlama, ExLlamaCache, ExLlamaConfig
    from exllama.tokenizer import ExLlamaTokenizer
except:
    logger.warning('Exllama module failed to load. Will attempt to load from repositories.')
    try:
        from modules.relative_imports import RelativeImport

        with RelativeImport("repositories/exllama"):
            from generator import ExLlamaGenerator
            from model import ExLlama, ExLlamaCache, ExLlamaConfig
            from tokenizer import ExLlamaTokenizer
    except:
        logger.error("Could not find repositories/exllama/. Make sure that exllama is cloned inside repositories/ and is up to date.")
        raise


class ExllamaModel:
    def __init__(self):
        pass

    @classmethod
    def from_pretrained(self, path_to_model):

        path_to_model = Path(f'{shared.args.model_dir}') / Path(path_to_model)
        tokenizer_model_path = path_to_model / "tokenizer.model"
        model_config_path = path_to_model / "config.json"

        # Find the model checkpoint
        model_path = None
        for ext in ['.safetensors', '.pt', '.bin']:
            found = list(path_to_model.glob(f"*{ext}"))
            if len(found) > 0:
                if len(found) > 1:
                    logger.warning(f'More than one {ext} model has been found. The last one will be selected. It could be wrong.')

                model_path = found[-1]
                break

        config = ExLlamaConfig(str(model_config_path))
        config.model_path = str(model_path)
        config.max_seq_len = shared.args.max_seq_len
        config.compress_pos_emb = shared.args.compress_pos_emb
        if shared.args.gpu_split:
            config.set_auto_map(shared.args.gpu_split)
            config.gpu_peer_fix = True

        if shared.args.alpha_value:
            config.alpha_value = shared.args.alpha_value
            config.calculate_rotary_embedding_base()

        if torch_version.hip:
            config.rmsnorm_no_half2 = True
            config.rope_no_half2 = True
            config.matmul_no_half2 = True
            config.silu_no_half2 = True

        model = ExLlama(config)
        tokenizer = ExLlamaTokenizer(str(tokenizer_model_path))
        cache = ExLlamaCache(model)
        generator = ExLlamaGenerator(model, tokenizer, cache)

        result = self()
        result.config = config
        result.model = model
        result.cache = cache
        result.tokenizer = tokenizer
        result.generator = generator
        return result, result

    def generate_with_streaming(self, prompt, state):
        self.generator.settings.temperature = state['temperature']
        self.generator.settings.top_p = state['top_p']
        self.generator.settings.top_k = state['top_k']
        self.generator.settings.typical = state['typical_p']
        self.generator.settings.token_repetition_penalty_max = state['repetition_penalty']
        self.generator.settings.token_repetition_penalty_sustain = -1 if state['repetition_penalty_range'] <= 0 else state['repetition_penalty_range']
        if state['ban_eos_token']:
            self.generator.disallow_tokens([self.tokenizer.eos_token_id])
        else:
            self.generator.disallow_tokens(None)

        self.generator.end_beam_search()

        # Tokenizing the input
        ids = self.generator.tokenizer.encode(prompt)
        ids = ids[:, -get_max_prompt_length(state):]

        self.generator.gen_begin_reuse(ids)
        initial_len = self.generator.sequence[0].shape[0]
        has_leading_space = False
        for i in range(state['max_new_tokens']):
            token = self.generator.gen_single_token()
            if i == 0 and self.generator.tokenizer.tokenizer.IdToPiece(int(token)).startswith('▁'):
                has_leading_space = True

            decoded_text = self.generator.tokenizer.decode(self.generator.sequence[0][initial_len:])
            if has_leading_space:
                decoded_text = ' ' + decoded_text

            yield decoded_text
            if token.item() == self.generator.tokenizer.eos_token_id or shared.stop_everything:
                break

    def generate(self, prompt, state):
        output = ''
        for output in self.generate_with_streaming(prompt, state):
            pass

        return output

    def encode(self, string, **kwargs):
        return self.tokenizer.encode(string)

    def decode(self, string, **kwargs):
        return self.tokenizer.decode(string)[0]