Spaces:
Runtime error
Runtime error
import re | |
from pathlib import Path | |
import yaml | |
from modules import shared, ui | |
def get_model_settings_from_yamls(model): | |
settings = shared.model_config | |
model_settings = {} | |
for pat in settings: | |
if re.match(pat.lower(), model.lower()): | |
for k in settings[pat]: | |
model_settings[k] = settings[pat][k] | |
return model_settings | |
def infer_loader(model_name): | |
path_to_model = Path(f'{shared.args.model_dir}/{model_name}') | |
model_settings = get_model_settings_from_yamls(model_name) | |
if not path_to_model.exists(): | |
loader = None | |
elif Path(f'{shared.args.model_dir}/{model_name}/quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0): | |
loader = 'AutoGPTQ' | |
elif len(list(path_to_model.glob('*ggml*.bin'))) > 0: | |
loader = 'llama.cpp' | |
elif re.match('.*ggml.*\.bin', model_name.lower()): | |
loader = 'llama.cpp' | |
elif re.match('.*rwkv.*\.pth', model_name.lower()): | |
loader = 'RWKV' | |
elif shared.args.flexgen: | |
loader = 'FlexGen' | |
else: | |
loader = 'Transformers' | |
return loader | |
# UI: update the command-line arguments based on the interface values | |
def update_model_parameters(state, initial=False): | |
elements = ui.list_model_elements() # the names of the parameters | |
gpu_memories = [] | |
for i, element in enumerate(elements): | |
if element not in state: | |
continue | |
value = state[element] | |
if element.startswith('gpu_memory'): | |
gpu_memories.append(value) | |
continue | |
if initial and vars(shared.args)[element] != vars(shared.args_defaults)[element]: | |
continue | |
# Setting null defaults | |
if element in ['wbits', 'groupsize', 'model_type'] and value == 'None': | |
value = vars(shared.args_defaults)[element] | |
elif element in ['cpu_memory'] and value == 0: | |
value = vars(shared.args_defaults)[element] | |
# Making some simple conversions | |
if element in ['wbits', 'groupsize', 'pre_layer']: | |
value = int(value) | |
elif element == 'cpu_memory' and value is not None: | |
value = f"{value}MiB" | |
if element in ['pre_layer']: | |
value = [value] if value > 0 else None | |
setattr(shared.args, element, value) | |
found_positive = False | |
for i in gpu_memories: | |
if i > 0: | |
found_positive = True | |
break | |
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']): | |
if found_positive: | |
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories] | |
else: | |
shared.args.gpu_memory = None | |
# UI: update the state variable with the model settings | |
def apply_model_settings_to_state(model, state): | |
model_settings = get_model_settings_from_yamls(model) | |
if 'loader' not in model_settings: | |
loader = infer_loader(model) | |
if 'wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0: | |
loader = 'AutoGPTQ' | |
# If the user is using an alternative GPTQ loader, let them keep using it | |
if not (loader == 'AutoGPTQ' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlama', 'ExLlama_HF']): | |
state['loader'] = loader | |
for k in model_settings: | |
if k in state: | |
if k in ['wbits', 'groupsize']: | |
state[k] = str(model_settings[k]) | |
else: | |
state[k] = model_settings[k] | |
return state | |
# Save the settings for this model to models/config-user.yaml | |
def save_model_settings(model, state): | |
if model == 'None': | |
yield ("Not saving the settings because no model is loaded.") | |
return | |
with Path(f'{shared.args.model_dir}/config-user.yaml') as p: | |
if p.exists(): | |
user_config = yaml.safe_load(open(p, 'r').read()) | |
else: | |
user_config = {} | |
model_regex = model + '$' # For exact matches | |
for _dict in [user_config, shared.model_config]: | |
if model_regex not in _dict: | |
_dict[model_regex] = {} | |
if model_regex not in user_config: | |
user_config[model_regex] = {} | |
for k in ui.list_model_elements(): | |
user_config[model_regex][k] = state[k] | |
shared.model_config[model_regex][k] = state[k] | |
with open(p, 'w') as f: | |
f.write(yaml.dump(user_config, sort_keys=False)) | |
yield (f"Settings for {model} saved to {p}") | |