Spaces:
Runtime error
Runtime error
File size: 1,514 Bytes
10d6a6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ashercn97/awesome-prompts-merged")
model = AutoModelForCausalLM.from_pretrained("ashercn97/awesome-prompts-merged", load_in_4bit=True)
pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
def generate(prompt):
form = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n
### Instruction:\n
{}\n
### Response:
""".format(prompt)
prompts = [form]
results = pipeline(prompts, max_length=150)
output = results[0]
return results[0]
input_component = gr.Textbox(label = "Input a persona, e.g. photographer", value = "photographer")
output_component = gr.Textbox(label = "Prompt")
examples = [["photographer"], ["developer"]]
description = "This app generates ChatGPT prompts, it's based on a BART model trained on [this dataset](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts). π Simply enter a persona that you want the prompt to be generated based on. π§π»π§π»βππ§π»βπ¨π§π»βπ¬π§π»βπ»π§πΌβπ«π§π½βπΎ"
gr.Interface(generate, inputs = input_component, outputs=output_component, examples=examples, title = "π¨π»βπ€ ChatGPT Prompt Generator π¨π»βπ€", description=description).launch()
|