ashercn97's picture
Update app.py
fa489ae
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("ashercn97/awesome-prompts-merged")
model = AutoModelForCausalLM.from_pretrained("ashercn97/awesome-prompts-merged")
pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
def generate(prompt):
form = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n
### Instruction:\n
{}\n
### Response:
""".format(prompt)
prompts = [form]
results = pipeline(prompts, max_length=150)
output = results[0]
return results[0]
input_component = gr.Textbox(label = "Input a persona, e.g. photographer", value = "photographer")
output_component = gr.Textbox(label = "Prompt")
examples = [["photographer"], ["developer"]]
description = "This app generates ChatGPT prompts, it's based on a BART model trained on [this dataset](https://huggingface.co/datasets/fka/awesome-chatgpt-prompts). πŸ““ Simply enter a persona that you want the prompt to be generated based on. πŸ§™πŸ»πŸ§‘πŸ»β€πŸš€πŸ§‘πŸ»β€πŸŽ¨πŸ§‘πŸ»β€πŸ”¬πŸ§‘πŸ»β€πŸ’»πŸ§‘πŸΌβ€πŸ«πŸ§‘πŸ½β€πŸŒΎ"
gr.Interface(generate, inputs = input_component, outputs=output_component, examples=examples, title = "πŸ‘¨πŸ»β€πŸŽ€ ChatGPT Prompt Generator πŸ‘¨πŸ»β€πŸŽ€", description=description).launch()