Spaces:
Runtime error
Runtime error
ashisdeveloper
commited on
Commit
•
9ff61cd
1
Parent(s):
3a187ef
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig, AutoTokenizer, Qwen2TokenizerFast
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import requests
|
5 |
+
from accelerate import init_empty_weights
|
6 |
+
|
7 |
+
|
8 |
+
USE_GPU = True
|
9 |
+
|
10 |
+
device = torch.device("cuda" if USE_GPU and torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
processor = AutoProcessor.from_pretrained(
|
13 |
+
'allenai/MolmoE-1B-0924',
|
14 |
+
trust_remote_code=True,
|
15 |
+
torch_dtype='auto',
|
16 |
+
device_map='auto' if USE_GPU else None,
|
17 |
+
cache_dir="./models/molmo1"
|
18 |
+
)
|
19 |
+
with init_empty_weights():
|
20 |
+
model = AutoModelForCausalLM.from_pretrained(
|
21 |
+
'allenai/MolmoE-1B-0924',
|
22 |
+
trust_remote_code=True,
|
23 |
+
torch_dtype='auto',
|
24 |
+
device_map='auto' if USE_GPU else None,
|
25 |
+
cache_dir="./models/molmo1",
|
26 |
+
attn_implementation="eager"
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
if not USE_GPU:
|
32 |
+
model.to(device)
|
33 |
+
|
34 |
+
model.tie_weights()
|
35 |
+
|
36 |
+
image_path = "./public/image.jpg" # Replace with your image file path
|
37 |
+
image = Image.open(image_path)
|
38 |
+
image = image.convert("RGB")
|
39 |
+
|
40 |
+
inputs = processor.process(
|
41 |
+
images=[image],
|
42 |
+
text="Extract text"
|
43 |
+
)
|
44 |
+
|
45 |
+
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
|
46 |
+
print('STARTED')
|
47 |
+
output = model.generate_from_batch(
|
48 |
+
inputs,
|
49 |
+
GenerationConfig(
|
50 |
+
max_new_tokens=2000,
|
51 |
+
# temperature=0.1,
|
52 |
+
# top_p=top_p,
|
53 |
+
stop_strings="<|endoftext|>"
|
54 |
+
),
|
55 |
+
tokenizer=processor.tokenizer
|
56 |
+
)
|
57 |
+
|
58 |
+
# Only get generated tokens; decode them to text
|
59 |
+
generated_tokens = output[0, inputs['input_ids'].size(1):]
|
60 |
+
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
|
61 |
+
|
62 |
+
print(generated_text)
|
63 |
+
|