File size: 4,885 Bytes
973bffe
 
 
 
 
 
a7ec3bd
973bffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52cf31b
1948f3b
 
9bfcdc8
 
 
 
1948f3b
5aec74c
9bfcdc8
 
 
 
 
 
 
5aec74c
 
 
 
9bfcdc8
5aec74c
 
 
 
9bfcdc8
 
 
 
 
 
 
 
5aec74c
52cf31b
 
9bfcdc8
a0b81f5
9bfcdc8
 
 
1948f3b
52cf31b
 
 
 
 
 
 
 
 
 
 
 
9bfcdc8
 
 
 
 
1948f3b
52cf31b
 
 
 
 
 
9bfcdc8
 
 
 
 
 
 
 
a0b81f5
9bfcdc8
 
 
 
 
52cf31b
9bfcdc8
1948f3b
 
a0b81f5
5aec74c
 
 
 
 
 
 
9bfcdc8
 
 
a0b81f5
9bfcdc8
 
5aec74c
a0b81f5
52cf31b
a0b81f5
5aec74c
9bfcdc8
5aec74c
9bfcdc8
 
5aec74c
 
 
 
 
 
 
 
 
 
 
a0b81f5
52cf31b
a0b81f5
 
9bfcdc8
 
 
 
 
 
 
 
 
973bffe
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from transformers import pipeline

# Load the model
classifier = pipeline(
    "text-classification", 
    model="ashishkgpian/biobert_icd9_classifier_ehr"
)

def classify_symptoms(text):
    try:
        results = classifier(text, top_k=5)
        formatted_results = []
        for result in results:
            formatted_results.append({
                "ICD9 Code": result['label'], 
                "Confidence": f"{result['score']:.2%}"
            })
        return formatted_results
    except Exception as e:
        return f"Error processing classification: {str(e)}"

# Enhanced CSS with better color contrast and readability
custom_css = """
.gradio-container {
    max-width: 1200px !important;
    margin: auto !important;
    padding: 2rem !important;
    background-color: #f0f4f7 !important;
}
.main-container {
    text-align: center;
    padding: 1rem;
    margin-bottom: 2rem;
    background: #ffffff;
    border-radius: 10px;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
}
h1 {
    color: #2c3e50 !important;
    font-size: 2.5rem !important;
    margin-bottom: 0.5rem !important;
}
h3 {
    color: #34495e !important;
    font-size: 1.2rem !important;
    font-weight: normal !important;
}
.input-container {
    background: white !important;
    padding: 2rem !important;
    border-radius: 10px !important;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1) !important;
    margin-bottom: 1.5rem !important;
}
textarea {
    background: white !important;
    color: #2c3e50 !important;
    border: 2px solid #3498db !important;
    border-radius: 8px !important;
    padding: 1rem !important;
    font-size: 1.1rem !important;
    min-height: 120px !important;
}
.submit-btn {
    background-color: #2ecc71 !important;
    color: white !important;
    padding: 0.8rem 2rem !important;
    border-radius: 8px !important;
    font-size: 1.1rem !important;
    margin-top: 1rem !important;
    transition: background-color 0.3s ease !important;
}
.submit-btn:hover {
    background-color: #27ae60 !important;
}
.output-container {
    background: white !important;
    padding: 2rem !important;
    border-radius: 10px !important;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1) !important;
}
.output-container pre {
    background: #f8f9fa !important;
    color: #2c3e50 !important;
    border-radius: 8px !important;
    padding: 1rem !important;
}
.examples-container {
    background: white !important;
    padding: 1.5rem !important;
    border-radius: 10px !important;
    margin-top: 1rem !important;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1) !important;
}
.footer {
    text-align: center;
    margin-top: 2rem;
    padding: 1rem;
    background: white;
    border-radius: 10px;
    box-shadow: 0 2px 8px rgba(0, 0, 0, 0.1);
    color: #2c3e50;
}
"""

with gr.Blocks(css=custom_css) as demo:
    with gr.Row(elem_classes=["main-container"]):
        gr.Markdown(
            """
            # 🏥 MedAI: Clinical Symptom ICD9 Classifier
            ### Advanced AI-Powered Diagnostic Code Assistant
            """
        )
    
    with gr.Row():
        with gr.Column(elem_classes=["input-container"]):
            input_text = gr.Textbox(
                label="Clinical Symptom Description",
                placeholder="Enter detailed patient symptoms and clinical observations...",
                lines=5
            )
            submit_btn = gr.Button("Analyze Symptoms", elem_classes=["submit-btn"])
            
    with gr.Row(elem_classes=["output-container"]):
        output = gr.JSON(
            label="Suggested ICD9 Diagnostic Codes"
        )
    
    with gr.Row(elem_classes=["examples-container"]):
        examples = gr.Examples(
            examples=[
                ["45-year-old male experiencing severe chest pain, radiating to left arm, with shortness of breath and excessive sweating"],
                ["Persistent headache for 2 weeks, accompanied by dizziness and occasional blurred vision"],
                ["Diabetic patient reporting frequent urination, increased thirst, and unexplained weight loss"],
                ["Elderly patient with chronic knee pain, reduced mobility, and signs of inflammation"]
            ],
            inputs=input_text,
            label="Example Clinical Cases"
        )
    
    submit_btn.click(fn=classify_symptoms, inputs=input_text, outputs=output)
    input_text.submit(fn=classify_symptoms, inputs=input_text, outputs=output)
    
    with gr.Row():
        gr.Markdown(
            """
            <div class="footer">
            ⚕️ <strong>Medical Disclaimer:</strong> This AI tool is designed to assist medical professionals in ICD9 code classification.
            Always verify suggestions with clinical judgment and consult appropriate medical resources.
            </div>
            """,
        )

if __name__ == "__main__":
    demo.launch()