File size: 7,637 Bytes
11ec956
 
 
 
 
 
 
 
bb41e4b
11ec956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6813c5
1948f3b
 
5665b89
 
 
 
 
 
 
1ea454c
 
1948f3b
5aec74c
9bfcdc8
5665b89
 
1ea454c
5665b89
1ea454c
5665b89
 
 
 
 
 
 
1ea454c
 
9bfcdc8
f6813c5
 
248bb29
f6813c5
 
 
 
 
248bb29
f6813c5
 
a455fe1
9bfcdc8
f6813c5
 
324b7a2
f6813c5
 
 
 
324b7a2
 
1ea454c
f6813c5
248bb29
324b7a2
1ea454c
9bfcdc8
5aec74c
f6813c5
1ea454c
f6813c5
a0b81f5
9bfcdc8
248bb29
f6813c5
5665b89
1948f3b
52cf31b
f6813c5
52cf31b
f6813c5
52cf31b
248bb29
f6813c5
324b7a2
f6813c5
 
324b7a2
52cf31b
 
f6813c5
52cf31b
9bfcdc8
f6813c5
 
324b7a2
f6813c5
 
 
 
4a02f51
324b7a2
 
1ea454c
f6813c5
248bb29
324b7a2
1ea454c
52cf31b
9bfcdc8
f6813c5
 
324b7a2
5665b89
f6813c5
5665b89
f6813c5
1ea454c
324b7a2
 
1ea454c
f6813c5
248bb29
1ea454c
a9de279
9bfcdc8
a0b81f5
5665b89
1ea454c
5665b89
 
1ea454c
 
9bfcdc8
1948f3b
 
a0b81f5
5aec74c
5665b89
248bb29
 
 
 
 
 
a455fe1
5665b89
4a02f51
 
 
 
 
 
 
5665b89
a455fe1
 
 
 
 
5665b89
 
 
 
 
 
 
 
 
 
 
 
a0b81f5
52cf31b
a0b81f5
 
5665b89
9bfcdc8
 
 
 
5665b89
9bfcdc8
973bffe
 
5665b89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import gradio as gr
from transformers import pipeline
import pandas as pd
import os

# Load the model
classifier = pipeline(
    "text-classification", 
    model="ashishkgpian/biolink_large_disease_classification"
)

# Load ICD9 codes data
icd9_data = pd.read_csv('D_ICD_DIAGNOSES.csv')
icd9_data.columns = ['ROW_ID', 'ICD9_CODE', 'SHORT_TITLE', 'LONG_TITLE']

def preprocessing(test_df):
    test_df.loc[
        test_df['ICD9_CODE'].str.startswith("V"), 'ICD9_CODE'] = test_df.ICD9_CODE.apply(
        lambda x: x[:4])
    test_df.loc[
        test_df['ICD9_CODE'].str.startswith("E"), 'ICD9_CODE'] = test_df.ICD9_CODE.apply(
        lambda x: x[:4])
    test_df.loc[(~test_df.ICD9_CODE.str.startswith("E")) & (
        ~test_df.ICD9_CODE.str.startswith("V")), 'ICD9_CODE'] = test_df.ICD9_CODE.apply(
        lambda x: x[:3])
    return test_df

icd9_data = preprocessing(icd9_data)

def classify_symptoms(text):
    try:
        results = classifier(text, top_k=5)
        formatted_results = []
        for result in results:
            code = result['label']
            code_info = icd9_data[icd9_data['ICD9_CODE'] == code]
            formatted_results.append({
                "ICD9 Code": code,
                "Short Title": code_info['SHORT_TITLE'].iloc[0] if not code_info.empty else "N/A",
                "Long Title": code_info['LONG_TITLE'].iloc[0] if not code_info.empty else "N/A",
                "Confidence": f"{result['score']:.2%}"
            })
        return formatted_results
    except Exception as e:
        return f"Error processing classification: {str(e)}"


custom_css = """
.gradio-container {
    width: 100% !important;
    max-width: 100% !important;
    margin: 0 !important;
    padding: 0 !important;
    min-height: 100vh !important;
    display: flex !important;
    flex-direction: column !important;
    background-color: #000000 !important;
    color: #ffffff !important;
}
.main-container {
    text-align: center;
    padding: 2rem;
    margin: 0;
    background: #000000;
    width: 100%;
    color: #ffffff;
}
.content-wrapper {
    max-width: 1400px;
    margin: 0 auto;
    padding: 0 2rem;
    width: 100%;
    box-sizing: border-box;
    background: #000000;
    color: #ffffff;
}
h1 {
    color: #b388ff !important;
    font-size: 2.5rem !important;  /* Reduced from 3rem */
    margin-bottom: 0.5rem !important;
    font-weight: 700 !important;
}
h3 {
    color: #9575cd !important;
    font-size: 1.2rem !important;  /* Reduced from 1.4rem */
    font-weight: 500 !important;
    margin-bottom: 2rem !important;
}
.input-container {
    background: #121212 !important;
    padding: 2rem !important;
    border-radius: 12px !important;
    box-shadow: 0 4px 6px rgba(255, 255, 255, 0.05) !important;
    margin: 2rem 0 !important;
    width: 100% !important;
    border: 1px solid #333333 !important;
}
.input-container label {
    color: #ffffff !important;
    font-weight: 600 !important;
    font-size: 1rem !important;  /* Reduced from 1.1rem */
    margin-bottom: 0.5rem !important;
    background: transparent !important;
}
textarea {
    background: #1e1e1e !important;
    color: #ffffff !important;
    border: 2px solid #673ab7 !important;
    border-radius: 8px !important;
    padding: 1rem !important;
    font-size: 1.1rem !important;  /* Reduced from 1.2rem */
    min-height: 150px !important;
    width: 100% !important;
}
.submit-btn {
    background-color: #673ab7 !important;
    color: white !important;
    padding: 1rem 3rem !important;
    border-radius: 8px !important;
    font-size: 1.1rem !important;  /* Reduced from 1.2rem */
    margin-top: 1.5rem !important;
    transition: all 0.3s ease !important;
    width: auto !important;
    font-weight: 600 !important;
    border: none !important;
}
.submit-btn:hover {
    background-color: #5e35b1 !important;
}
.output-container {
    background: #121212 !important;
    padding: 2rem !important;
    border-radius: 12px !important;
    box-shadow: 0 4px 6px rgba(255, 255, 255, 0.05) !important;
    margin: 2rem 0 !important;
    width: 100% !important;
    border: 1px solid #333333 !important;
    color: #ffffff !important;
}
.output-container label {
    color: #ffffff !important;
    font-weight: 600 !important;
    font-size: 1rem !important;  /* Reduced from 1.1rem */
    margin-bottom: 1rem !important;
    background: transparent !important;
}
.examples-container {
    background: #121212 !important;
    padding: 2rem !important;
    border-radius: 12px !important;
    margin: 2rem 0 !important;
    box-shadow: 0 4px 6px rgba(255, 255, 255, 0.05) !important;
    width: 100% !important;
    border: 1px solid #333333 !important;
    color: #ffffff !important;
}
.examples-container label {
    color: #ffffff !important;
    font-weight: 600 !important;
    font-size: 1rem !important;  /* Reduced from 1.1rem */
    background: transparent !important;
}
.footer {
    text-align: center;
    padding: 2rem;
    background: #000000;
    margin-top: auto;
    width: 100%;
    border-top: 1px solid #333333;
    color: #ffffff;
}
"""

with gr.Blocks(css=custom_css) as demo:
    with gr.Row(elem_classes=["main-container"]):
        with gr.Column(elem_classes=["content-wrapper"]):
            gr.Markdown(
                """
                # 🏥 Clinical Symptom ICD9 Classifier
                ### AI-Powered Medical Diagnosis Code Suggestion Tool
                """
            )
            with gr.Row(elem_classes=["input-output-row"]):
                with gr.Column(elem_classes=["input-container"]):
                    gr.Markdown("Clinical Symptom Description")
                    with gr.Column(elem_classes=["inner-input-container"]):
                        input_text = gr.Textbox(
                            show_label=False,
                            placeholder="Enter detailed patient symptoms and clinical observations...",
                            lines=5
                        )
                    submit_btn = gr.Button("Analyze Symptoms", elem_classes=["submit-btn"])
                
                with gr.Column(elem_classes=["output-container"]):
                    output = gr.JSON(
                        label="Suggested ICD9 Diagnostic Codes with Descriptions"
                    )
            
            with gr.Row(elem_classes=["examples-container"]):
                examples = gr.Examples(
                    examples=[
                        ["45-year-old male experiencing severe chest pain, radiating to left arm, with shortness of breath and excessive sweating"],
                        ["Persistent headache for 2 weeks, accompanied by dizziness and occasional blurred vision"],
                        ["Diabetic patient reporting frequent urination, increased thirst, and unexplained weight loss"],
                        ["Elderly patient with chronic knee pain, reduced mobility, and signs of inflammation"]
                    ],
                    inputs=input_text,
                    label="Example Clinical Cases"
                )
    
    submit_btn.click(fn=classify_symptoms, inputs=input_text, outputs=output)
    input_text.submit(fn=classify_symptoms, inputs=input_text, outputs=output)
    
    with gr.Row(elem_classes=["footer"]):
        gr.Markdown(
            """
            ⚕️ <strong>Medical Disclaimer:</strong> This AI tool is designed to assist medical professionals in ICD9 code classification.
            Always verify suggestions with clinical judgment and consult appropriate medical resources.
            """
        )

if __name__ == "__main__":
    demo.launch(share=True)