Spaces:
Running
Running
File size: 10,494 Bytes
29cc4c5 90cb4f4 2b2f0d1 48fa8cf 6cdfa00 90cb4f4 2b2f0d1 b7a713a 46dae9a b7a713a a2b3c97 b7a713a 46dae9a b7a713a 46dae9a dd3763f 46dae9a b7a713a 2b2f0d1 b7a713a 46dae9a 4f7c053 46dae9a 2b2f0d1 46dae9a 4f7c053 46dae9a 2b2f0d1 46dae9a 4f7c053 46dae9a 2b2f0d1 46dae9a 4f7c053 b7a713a a2b3c97 b7a713a 4f7c053 a2b3c97 b7a713a a2b3c97 b7a713a 48fa8cf b7a713a 6cdfa00 b7a713a 0960577 a2b3c97 0960577 b7a713a a2b3c97 4e9003c a2b3c97 4e9003c a2b3c97 0960577 b7a713a 934c580 0960577 6cdfa00 0960577 b7a713a 4f7c053 b7a713a 6cdfa00 4f7c053 b7a713a 6cdfa00 c2ca81b 1a117cc 6cdfa00 b7a713a 876e6bb 48fa8cf b7a713a 6cdfa00 b7a713a a2b3c97 b7a713a a2b3c97 b7a713a 876e6bb 0759822 b7a713a 90cb4f4 b7a713a 0759822 c96708d 0759822 a2b3c97 dd7da04 48fa8cf dd7da04 48fa8cf 0759822 b7a713a 48fa8cf c96708d 0960577 0759822 0960577 0759822 29cc4c5 0960577 29cc4c5 0960577 b7a713a 29cc4c5 0759822 b7a713a 90cb4f4 46dae9a 0759822 29cc4c5 0759822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
from db.schema import Response, ModelRatings
import streamlit as st
from datetime import datetime
from dotenv import load_dotenv
from views.nav_buttons import navigation_buttons
import random
from utils.loaders import load_html
load_dotenv()
def display_completion_message():
"""Display a standardized survey completion message."""
st.markdown(
"""
<div class='exit-container'>
<h1>You have already completed the survey! Thank you for participating!</h1>
<p>Your responses have been saved successfully.</p>
<p>You can safely close this window or start a new survey.</p>
</div>
""",
unsafe_allow_html=True,
)
st.session_state.show_questions = False
st.session_state.completed = True
st.session_state.start_new_survey = True
def get_previous_ratings(model_name, query_key, current_index):
"""Retrieve previous ratings from session state."""
previous_ratings = {}
if current_index < st.session_state.current_index and len(
st.session_state.responses
) > current_index:
if st.session_state.previous_ratings:
previous_ratings = st.session_state.previous_ratings.get(
st.session_state.data.iloc[current_index]["config_id"], {}
)
previous_ratings = previous_ratings.get(
model_name, None
) # Fix: Model key from session state
elif len(st.session_state.responses) <= current_index:
previous_ratings = {}
else:
response_from_session = st.session_state.responses[current_index]
try:
previous_ratings = response_from_session.model_ratings.get(model_name, {})
except AttributeError:
previous_ratings = response_from_session["model_ratings"].get(model_name, {})
stored_query_ratings = {}
if previous_ratings:
if "query_v" in query_key:
try:
stored_query_ratings = previous_ratings.query_v_ratings
except AttributeError:
stored_query_ratings = previous_ratings["query_v_ratings"]
elif "query_p0" in query_key:
try:
stored_query_ratings = previous_ratings.query_p0_ratings
except AttributeError:
stored_query_ratings = previous_ratings["query_p0_ratings"]
elif "query_p1" in query_key:
try:
stored_query_ratings = previous_ratings.query_p1_ratings
except AttributeError:
stored_query_ratings = previous_ratings["query_p1_ratings"]
return stored_query_ratings if stored_query_ratings else {}
def render_single_rating(
label,
options,
format_func,
key_prefix,
stored_rating,
col,
):
"""Renders a single rating widget (radio)."""
with col:
return st.radio(
label,
options=options,
format_func=format_func,
key=f"{key_prefix}",
index=stored_rating if stored_rating is not None else 0,
)
def clean_query_text(query_text):
"""Clean the query text for display."""
if query_text.startswith('"') or query_text.startswith("'") or query_text.endswith('"') or query_text.endswith("'"):
query_text = query_text.replace('"', '').replace("'", "")
if query_text[-1] not in [".", "?", "!", "\n"]:
query_text += "."
return query_text.capitalize()
def render_query_ratings(
model_name,
config,
query_key,
current_index,
has_persona_alignment=False,
):
"""Helper function to render ratings for a given query."""
stored_query_ratings = get_previous_ratings(model_name, query_key, current_index)
stored_groundedness = stored_query_ratings.get("groundedness", 0)
stored_clarity = stored_query_ratings.get("clarity", 0)
stored_overall_rating = stored_query_ratings.get("overall", 0)
stored_persona_alignment = (
stored_query_ratings.get("persona_alignment", 0) if has_persona_alignment else 0
)
if model_name == "gemini":
bg_color = "#e0f7fa"
else:
bg_color = "#f0f4c3"
query_text = clean_query_text(config[model_name + "_" + query_key])
with st.container():
st.markdown(
f"""
<div style="background-color:{bg_color}; padding:1rem;">
<h3 style="text-align:left;color:black;">
{config.index.get_loc(model_name + "_" + query_key) - 5}
</h3>
<p style="text-align:left;color:black;">
{query_text}</p>
</div>
""",
unsafe_allow_html=True,
)
col_no = 4 if has_persona_alignment else 3
cols = st.columns(col_no)
options = [0, 1, 2, 3, 4]
groundedness_rating = render_single_rating(
"Groundedness:",
options,
lambda x: ["N/A", "Not Grounded", "Partially Grounded", "Grounded", "Unclear"][
x
],
f"rating_{model_name}{query_key}_groundedness_",
stored_groundedness,
cols[0],
)
persona_alignment_rating = None
if has_persona_alignment:
persona_alignment_rating = render_single_rating(
"Persona Alignment:",
options,
lambda x: ["N/A", "Not Aligned", "Partially Aligned", "Aligned", "Unclear"][
x
],
f"rating_{model_name}{query_key}_persona_alignment_",
stored_persona_alignment,
cols[1],
)
clarity_rating = render_single_rating(
"Clarity:",
[0, 1, 2, 3],
lambda x: ["N/A", "Not Clear", "Somewhat Clear", "Very Clear"][x],
f"rating_{model_name}{query_key}_clarity_",
stored_clarity,
cols[2] if has_persona_alignment else cols[1],
)
overall_rating = render_single_rating(
"Overall Fit:",
[0, 1, 2, 3],
lambda x: ["N/A", "Poor", "Moderate", "Strong Fit"][x],
f"rating_{model_name}{query_key}_overall_",
stored_overall_rating,
cols[3] if has_persona_alignment else cols[2],
)
return {
"clarity": clarity_rating,
"groundedness": groundedness_rating,
"persona_alignment": persona_alignment_rating if has_persona_alignment else None,
"overall": overall_rating,
}
def display_ratings_row(model_name, config, current_index):
# st.markdown(f"## {model_name.capitalize()} Ratings")
cols = st.columns(3)
# combinations = ["query_v", "query_p0", "query_p1"]
# random.shuffle(combinations)
with cols[0]:
query_v_ratings = render_query_ratings(
model_name,
config,
"query_v",
current_index,
has_persona_alignment=False,
)
with cols[1]:
query_p0_ratings = render_query_ratings(
model_name,
config,
"query_p0",
current_index,
has_persona_alignment=True,
)
with cols[2]:
query_p1_ratings = render_query_ratings(
model_name,
config,
"query_p1",
current_index,
has_persona_alignment=True,
)
if "persona_alignment" in query_v_ratings:
query_v_ratings.pop("persona_alignment")
return {
"query_v_ratings": query_v_ratings,
"query_p0_ratings": query_p0_ratings,
"query_p1_ratings": query_p1_ratings,
}
def questions_screen(data):
"""Display the questions screen with split layout."""
current_index = st.session_state.current_index
try:
config = data.iloc[current_index]
st.markdown(f"## Hello {st.session_state.username.capitalize()} π")
# Progress bar
progress = (current_index + 1) / len(data)
st.progress(progress)
st.write(f"Question {current_index + 1} of {len(data)}")
# st.subheader(f"Config ID: {config['config_id']}")
st.markdown("### Instructions")
instructions_html = load_html("static/instructions.html")
with st.expander("Instructions", expanded=False):
st.html(instructions_html)
# Context information
st.markdown("### Context Information")
with st.expander("Persona", expanded=True):
st.write(config["persona"])
with st.expander("Filters", expanded=True):
st.code(config["filters"], language="json")
# st.write("**Cities:**", config["city"])
# with st.expander("Full Context", expanded=False):
# st.text_area("", config["context"], height=300, disabled=False)
st.markdown("### Rate the following queries based on the above context.")
g_ratings = display_ratings_row("gemini", config, current_index)
l_ratings = display_ratings_row("llama", config, current_index)
# Additional comments
comment = st.text_area("Additional Comments (Optional):")
# Collecting the response data
response = Response(
config_id=config["config_id"],
model_ratings={
"gemini": ModelRatings(
query_v_ratings=g_ratings["query_v_ratings"],
query_p0_ratings=g_ratings["query_p0_ratings"],
query_p1_ratings=g_ratings["query_p1_ratings"],
),
"llama": ModelRatings(
query_v_ratings=l_ratings["query_v_ratings"],
query_p0_ratings=l_ratings["query_p0_ratings"],
query_p1_ratings=l_ratings["query_p1_ratings"],
),
},
comment=comment,
timestamp=datetime.now().isoformat(),
)
try:
st.session_state.ratings[current_index] = response["model_ratings"]
except TypeError:
st.session_state.ratings[current_index] = response.model_ratings
if len(st.session_state.responses) > current_index:
st.session_state.responses[current_index] = response
else:
st.session_state.responses.append(response)
# Navigation buttons
navigation_buttons(data, response)
except IndexError:
print("Survey completed!")
|