import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Load the pre-trained model and tokenizer tokenizer = AutoTokenizer.from_pretrained("pparasurama/raceBERT-ethnicity") model = AutoModelForSequenceClassification.from_pretrained("pparasurama/raceBERT-ethnicity") # Mapping of model output IDs to ethnicity labels id2label = { 0: "GreaterEuropean,British", 1: "GreaterEuropean,WestEuropean,French", 2: "GreaterEuropean,WestEuropean,Italian", 3: "GreaterEuropean,WestEuropean,Hispanic", 4: "GreaterEuropean,Jewish", 5: "GreaterEuropean,EastEuropean", 6: "Asian,IndianSubContinent", 7: "Asian,GreaterEastAsian,Japanese", 8: "GreaterAfrican,Muslim", 9: "Asian,GreaterEastAsian,EastAsian", 10: "GreaterEuropean,WestEuropean,Nordic", 11: "GreaterEuropean,WestEuropean,Germanic", 12: "GreaterAfrican,Africans" } # Function to make predictions based on the input name def predict_ethnicity(name): inputs = tokenizer(name, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=1)[0] # Get top 5 predictions top_preds = torch.topk(probabilities, 5) # Prepare the output as a sorted human-friendly list result = "\n".join([f"{id2label[idx.item()]}: {prob.item() * 100:.2f}%" for idx, prob in zip(top_preds.indices, top_preds.values)]) return result # Gradio Interface interface = gr.Interface( fn=predict_ethnicity, inputs=gr.Textbox(lines=1, placeholder="Enter a name"), outputs="text", title="TOPS Infosolutions Ethnicity Predictor - Kaleida", description="Enter a person's name and get the predicted ethnicity breakdown.", ) # Launch the Gradio app interface.launch(auth=("kaleida", "kaleida@1234"), share=True)