Spaces:
Runtime error
Runtime error
File size: 6,204 Bytes
7c40474 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import boto3
import openai
import whisper
import logging
import base64
import gradio as gr
from io import BytesIO
from langchain import OpenAI
from langchain.chains import RetrievalQA
from langchain.vectorstores import Chroma
from langchain.document_loaders import DirectoryLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from assets.char_poses_base64 import idle_html_base_64, thinking_html_base_64, talking_html_base64
logging.basicConfig(level="INFO",
filename='conversations.log',
filemode='a',
format='%(asctime)s %(message)s',
datefmt='%H:%M:%S')
logger = logging.getLogger('voice_agent')
global FUNC_CALL
FUNC_CALL = 0
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID')
AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY')
AWS_REGION_NAME = 'ap-south-1'
GENERAL_RSPONSE_TRIGGERS = ["I don't understand the question.", "I don't know", "Hello, my name is", "mentioned in the context provided"]
MESSAGES = [{"role": "system", "content": "You are a helpful assistant.."}]
CHAR_IDLE = f'<img src="{idle_html_base_64}"></img>'
CHAR_TALKING = f'<img src="{talking_html_base64}"></img>'
CHAR_THINKING = f'<img src="{thinking_html_base_64}"></img>'
AUDIO_HTML = ''
# Uncomment If this is your first Run:
import nltk
nltk.download('averaged_perceptron_tagger')
def initialize_knowledge_base():
loader = DirectoryLoader('profiles', glob='**/*.txt')
docs = loader.load()
char_text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
doc_texts = char_text_splitter.split_documents(docs)
openAI_embeddings = OpenAIEmbeddings()
vStore = Chroma.from_documents(doc_texts, openAI_embeddings)
conv_model = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vStore.as_retriever(
search_kwargs={"k": 1}
)
)
voice_model = whisper.load_model("tiny")
return conv_model, voice_model
def text_to_speech_gen(answer):
polly = boto3.client('polly',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION_NAME)
response = polly.synthesize_speech(
Text=answer,
VoiceId='Matthew',
OutputFormat='mp3',
Engine = "neural")
audio_stream = response['AudioStream'].read()
audio_html = audio_to_html(audio_stream)
return audio_html
def audio_to_html(audio_bytes):
audio_io = BytesIO(audio_bytes)
audio_io.seek(0)
audio_base64 = base64.b64encode(audio_io.read()).decode("utf-8")
audio_html = f'<audio src="data:audio/mpeg;base64,{audio_base64}" controls autoplay></audio>'
return audio_html
def update_img():
global FUNC_CALL
FUNC_CALL += 1
if FUNC_CALL % 2== 0:
CHARACTER_STATE = CHAR_TALKING
else:
CHARACTER_STATE = CHAR_THINKING
return CHARACTER_STATE
def user(user_message, history):
return "", history + [[user_message, None]]
conv_model, voice_model = initialize_knowledge_base()
def get_response(history, audio_input):
query_type = 'text'
question =history[-1][0]
if not question:
if audio_input:
query_type = 'audio'
os.rename(audio_input, audio_input + '.wav')
audio_file = open(audio_input + '.wav', "rb")
transcript = openai.Audio.transcribe("whisper-1", audio_file)
question = transcript['text']
else:
return None, None
logger.info("\nquery_type: %s", query_type)
logger.info("query_text: %s", question)
print('\nquery_type:', query_type)
print('\nquery_text:', question)
if question.lower().strip() == 'hi':
question = 'hello'
answer = conv_model.run(question)
logger.info("\ndocument_response: %s", answer)
print('\ndocument_response:', answer)
for trigger in GENERAL_RSPONSE_TRIGGERS:
if trigger in answer:
MESSAGES.append({"role": "user", "content": question})
chat = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=MESSAGES,
temperature=0.7,
n=128,
stop="\n"
)
answer = chat.choices[0].message.content
MESSAGES.append({"role": "assistant", "content": answer})
logger.info("general_response: %s", answer)
print('\ngeneral_response:', answer)
AUDIO_HTML = text_to_speech_gen(answer)
history[-1][1] = answer
return history, AUDIO_HTML
with gr.Blocks(title="Your Assistance Pal!") as demo:
with gr.Row():
output_html = gr.HTML(label="Felix's Voice", value=AUDIO_HTML)
output_html.visible = False
assistant_character = gr.HTML(label=None, value=CHAR_IDLE, show_label=False)
with gr.Column(scale=0.1):
chatbot = gr.Chatbot(label='Send a text or a voice input').style(height=285)
with gr.Row():
msg = gr.Textbox(placeholder='Write a chat & press Enter.', show_label=False).style(container=False)
with gr.Column(scale=0.5):
audio_input = gr.Audio(source="microphone", type='filepath', show_label=False).style(container=False)
button = gr.Button(value="Send")
msg.submit(user, [msg, chatbot], [msg, chatbot]
).then(update_img, outputs=[assistant_character]
).then(get_response, [chatbot, audio_input], [chatbot, output_html]
).then(update_img, outputs=[assistant_character])
button.click(user, [msg, chatbot], [msg, chatbot]
).then(update_img, outputs=[assistant_character]
).then(get_response, [chatbot, audio_input], [chatbot, output_html]
).then(update_img, outputs=[assistant_character])
demo.launch(debug=False, favicon_path='assets/favicon.png', show_api=False, share=False) |