File size: 16,452 Bytes
4299f7c 26312c5 4299f7c b934418 fe6e100 b934418 53409b8 951967e 4543735 e94f552 660b28d 800d0d0 660b28d b780647 3888ab7 a2c6cfa e94f552 a2c6cfa 29090fa 6df655f 410f581 8b3de7f e2a8b2b 8b3de7f 9ed302a 1424ad3 4543735 8d39a27 660b28d 1424ad3 660b28d 4543735 2a2c4ee 4543735 660b28d 1424ad3 6df655f 4543735 fe6e100 f025921 57440b4 f7f27b0 91a38ff e2a8b2b 8b3de7f 1424ad3 4543735 281d949 4543735 2967e03 8ea7c59 afd56a5 1209231 2967e03 4543735 6df655f abb25f7 cf7d19c 8d39a27 410f581 6df655f 410f581 7485e9b ffdd828 b9703ed d57ab6a 736f5d9 ecaa203 24957f5 ecaa203 8a5fb8f 1b6bdce d57ab6a 6ccde9d 8d39a27 abb25f7 8d39a27 91a38ff abb25f7 2ec1a72 8d39a27 abb25f7 8d39a27 2a2c4ee 6df655f 598a5c4 57440b4 8b3de7f f0b4cee 8b3de7f 9ed302a d46a61a 9ed302a d46a61a 9ed302a d46a61a 9ed302a 4299f7c 410f581 4801166 74f5b97 e2a8b2b 406db87 74f5b97 406db87 7a7d25f 406db87 410f581 cf187c8 9a96351 74f5b97 9a96351 cf187c8 f4a049a 1424ad3 f4a049a 410f581 e94f552 9a96351 8d69657 9a96351 8b3de7f abb25f7 598a5c4 abb25f7 598a5c4 9918a6a 598a5c4 87798b9 598a5c4 34fa13e 67e09bb 34fa13e 57440b4 f7f27b0 3858291 2a2c4ee 57440b4 f7f27b0 2a2c4ee fd58682 3858291 fd58682 2a2c4ee 8d39a27 6df655f 91d5e8a fd58682 f7f27b0 8a1f411 9918a6a fd58682 8d39a27 abb25f7 8d39a27 fd58682 660b28d 8d39a27 1309ddb fd58682 1309ddb fd58682 6df655f 3888ab7 800d0d0 b67a428 32d3f4b 3888ab7 8b3de7f 3888ab7 1309ddb a04859d e30e402 a04859d 99fabfd a04859d 99fabfd d0f533f 008d8d4 d0f533f 25f0c87 99fabfd b67a428 67e09bb 4299f7c b67a428 4299f7c f7f27b0 25f0c87 410f581 e1ba81d 410f581 25f0c87 8b3de7f 4299f7c e2a8b2b 91a38ff 1424ad3 10245a2 3adc64e d0f533f 660b28d a04859d 4cdbeb8 a04859d c04453c 410f581 8b3de7f e2a8b2b 8b3de7f 9ed302a 1424ad3 e2a8b2b 8b3de7f 04301a1 d85cb0d 8b3de7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
#================================================================
# https://huggingface.co/spaces/asigalov61/Advanced-MIDI-Renderer
#================================================================
# Packages:
#
# apt install fluidsynth
#================================================================
# Requirements:
#
# pip install gradio
# pip install numpy
# pip install scipy
# pip install matplotlib
# pip install networkx
# pip install scikit-learn
#================================================================
# Core modules:
#
# git clone --depth 1 https://github.com/asigalov61/tegridy-tools
#
# import TMIDIX
# import TPLOTS
# import midi_to_colab_audio
#================================================================
import os
import hashlib
import time
import datetime
from pytz import timezone
import copy
from collections import Counter
import random
import statistics
import gradio as gr
import TMIDIX
import TPLOTS
from midi_to_colab_audio import midi_to_colab_audio
#==========================================================================================================
def Render_MIDI(input_midi,
render_type,
soundfont_bank,
render_sample_rate,
custom_render_patch,
render_align,
render_transpose_value,
render_transpose_to_C4,
render_output_as_solo_piano,
render_remove_drums
):
print('*' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = time.time()
print('=' * 70)
print('Loading MIDI...')
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
fdata = open(input_midi, 'rb').read()
input_midi_md5hash = hashlib.md5(fdata).hexdigest()
print('=' * 70)
print('Requested settings:')
print('=' * 70)
print('Input MIDI file name:', fn)
print('Input MIDI md5 hash', input_midi_md5hash)
print('-' * 70)
print('Render type:', render_type)
print('Soudnfont bank', soundfont_bank)
print('Audio render sample rate', render_sample_rate)
print('Custom MIDI render patch', custom_render_patch)
print('Align to bars:', render_align)
print('Transpose value:', render_transpose_value)
print('Transpose to C4', render_transpose_to_C4)
print('Output as Solo Piano', render_output_as_solo_piano)
print('Remove drums:', render_remove_drums)
print('=' * 70)
print('Processing MIDI...Please wait...')
#=======================================================
# START PROCESSING
raw_score = TMIDIX.midi2single_track_ms_score(fdata)
escore = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore = TMIDIX.augment_enhanced_score_notes(escore, timings_divider=1)
first_note_index = [e[0] for e in raw_score[1]].index('note')
cscore = TMIDIX.chordify_score([1000, escore])
meta_data = raw_score[1][:first_note_index] + [escore[0]] + [escore[-1]] + [raw_score[1][-1]]
print('Done!')
print('=' * 70)
print('Input MIDI metadata:', meta_data[:5])
print('=' * 70)
print('Processing...Please wait...')
output_score = copy.deepcopy(escore)
if render_type == "Extract melody":
output_score = TMIDIX.add_melody_to_enhanced_score_notes(escore, return_melody=True)
output_score = TMIDIX.recalculate_score_timings(output_score)
elif render_type == "Flip":
output_score = TMIDIX.flip_enhanced_score_notes(escore)
elif render_type == "Reverse":
output_score = TMIDIX.reverse_enhanced_score_notes(escore)
elif render_type == 'Repair Chords':
fixed_cscore = TMIDIX.advanced_check_and_fix_chords_in_chordified_score(cscore)[0]
output_score = TMIDIX.flatten(fixed_cscore)
print('Done processing!')
print('=' * 70)
print('Repatching if needed...')
print('=' * 70)
if -1 < custom_render_patch < 128:
for e in output_score:
if e[3] != 9:
e[6] = custom_render_patch
print('Done repatching!')
print('=' * 70)
print('Sample output events', output_score[:5])
print('=' * 70)
print('Final processing...')
new_fn = fn1+'.mid'
if render_type != "Render as-is":
if render_transpose_value != 0:
output_score = TMIDIX.transpose_escore_notes(output_score, render_transpose_value)
if render_transpose_to_C4:
output_score = TMIDIX.transpose_escore_notes_to_pitch(output_score)
if render_align == "Start Times":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score)
elif render_align == "Start Times and Durations":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score, trim_durations=True)
elif render_align == "Start Times and Split Durations":
output_score = TMIDIX.recalculate_score_timings(output_score)
output_score = TMIDIX.align_escore_notes_to_bars(output_score, split_durations=True)
if render_type == "Longest Repeating Phrase":
zscore = TMIDIX.recalculate_score_timings(output_score)
lrno_score = TMIDIX.escore_notes_lrno_pattern_fast(zscore)
if lrno_score is not None:
output_score = lrno_score
else:
output_score = TMIDIX.recalculate_score_timings(TMIDIX.escore_notes_middle(output_score, 50))
if render_type == "Multi-Instrumental Summary":
zscore = TMIDIX.recalculate_score_timings(output_score)
c_escore_notes = TMIDIX.compress_patches_in_escore_notes_chords(zscore)
if len(c_escore_notes) > 128:
cmatrix = TMIDIX.escore_notes_to_image_matrix(c_escore_notes, filter_out_zero_rows=True, filter_out_duplicate_rows=True)
smatrix = TPLOTS.square_image_matrix(cmatrix, num_pca_components=max(1, min(5, len(c_escore_notes) // 128)))
output_score = TMIDIX.image_matrix_to_original_escore_notes(smatrix)
for o in output_score:
o[1] *= 250
o[2] *= 250
if render_output_as_solo_piano:
output_score = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=True)
if render_remove_drums:
output_score = TMIDIX.strip_drums_from_escore_notes(output_score)
if render_type == "Solo Piano Summary":
sp_escore_notes = TMIDIX.solo_piano_escore_notes(output_score, keep_drums=False)
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes)
if len(zscore) > 128:
bmatrix = TMIDIX.escore_notes_to_binary_matrix(zscore)
cmatrix = TMIDIX.compress_binary_matrix(bmatrix, only_compress_zeros=True)
smatrix = TPLOTS.square_binary_matrix(cmatrix, interpolation_order=max(1, min(5, len(zscore) // 128)))
output_score = TMIDIX.binary_matrix_to_original_escore_notes(smatrix)
for o in output_score:
o[1] *= 200
o[2] *= 200
SONG, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score)
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(SONG,
output_signature = 'Advanced MIDI Renderer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
else:
with open(new_fn, 'wb') as f:
f.write(fdata)
f.close()
if soundfont_bank in ["Super GM",
"Orpheus GM",
"Live HQ GM",
"Nice Strings + Orchestra",
"Real Choir",
"Super Game Boy",
"Proto Square"
]:
sf2bank = ["Super GM",
"Orpheus GM",
"Live HQ GM",
"Nice Strings + Orchestra",
"Real Choir",
"Super Game Boy",
"Proto Square"
].index(soundfont_bank)
else:
sf2bank = 0
if render_sample_rate in ["16000", "32000", "44100"]:
srate = int(render_sample_rate)
else:
srate = 16000
print('-' * 70)
print('Generating audio with SF2 bank', sf2bank, 'and', srate, 'Hz sample rate')
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfonts[sf2bank],
sample_rate=srate,
volume_scale=10,
output_for_gradio=True
)
print('-' * 70)
new_md5_hash = hashlib.md5(open(new_fn,'rb').read()).hexdigest()
print('Done!')
print('=' * 70)
#========================================================
output_midi_md5 = str(new_md5_hash)
output_midi_title = str(fn1)
output_midi_summary = str(meta_data)
output_midi = str(new_fn)
output_audio = (srate, audio)
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI hash:', output_midi_md5)
print('Output MIDI summary:', output_midi_summary[:5])
print('=' * 70)
#========================================================
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (time.time() - start_time), 'sec')
print('*' * 70)
#========================================================
return output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
#==========================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfonts = ["SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2",
"Orpheus_18.06.2020.sf2",
"Live HQ Natural SoundFont GM.sf2",
"Nice-Strings-PlusOrchestra-v1.6.sf2",
"KBH-Real-Choir-V2.5.sf2",
"SuperGameBoy.sf2",
"ProtoSquare.sf2"
]
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Renderer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Transform and render any MIDI</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Renderer&style=flat)\n\n"
"This is a demo for tegridy-tools\n\n"
"Please see [tegridy-tools](https://github.com/asigalov61/tegridy-tools) GitHub repo for more information\n\n"
)
gr.Markdown("## Upload your MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="filepath")
gr.Markdown("## Select desired Sound Font bank and render sample rate")
soundfont_bank = gr.Radio(["Super GM",
"Orpheus GM",
"Live HQ GM",
"Nice Strings + Orchestra",
"Real Choir",
"Super Game Boy",
"Proto Square"
],
label="SoundFont bank",
value="Super GM"
)
render_sample_rate = gr.Radio(["16000",
"32000",
"44100"
],
label="MIDI audio render sample rate",
value="16000"
)
gr.Markdown("## Select desired render type")
render_type = gr.Radio(["Render as-is",
"Custom render",
"Extract melody",
"Flip",
"Reverse",
"Repair Chords",
"Longest Repeating Phrase",
"Multi-Instrumental Summary",
"Solo Piano Summary"
],
label="Render type",
value="Render as-is"
)
gr.Markdown("## Select custom render options")
custom_render_patch = gr.Slider(-1, 127, value=-1, label="Custom render MIDI patch")
render_align = gr.Radio(["Do not align",
"Start Times",
"Start Times and Durations",
"Start Times and Split Durations"
],
label="Align output to bars",
value="Do not align"
)
render_transpose_value = gr.Slider(-12, 12, value=0, step=1, label="Transpose value")
render_transpose_to_C4 = gr.Checkbox(label="Transpose to C4", value=False)
render_output_as_solo_piano = gr.Checkbox(label="Output as Solo Piano", value=False)
render_remove_drums = gr.Checkbox(label="Remove drums", value=False)
submit = gr.Button("Render MIDI", variant="primary")
gr.Markdown("## Render results")
output_midi_md5 = gr.Textbox(label="Output MIDI md5 hash")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = submit.click(Render_MIDI, [input_midi,
render_type,
soundfont_bank,
render_sample_rate,
custom_render_patch,
render_align,
render_transpose_value,
render_transpose_to_C4,
render_output_as_solo_piano,
render_remove_drums
],
[output_midi_md5,
output_midi_title,
output_midi_summary,
output_midi,
output_audio,
output_plot
])
app.queue().launch() |