File size: 31,381 Bytes
395f8ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
#! /usr/bin/python3

r'''############################################################################

################################################################################

#

#

#	      Tegridy Plots Python Module (TPLOTS)

#	      Version 1.0

#

#	      Project Los Angeles

#

#	      Tegridy Code 2024

#

#       https://github.com/asigalov61/tegridy-tools

#

#

################################################################################

#

#       Copyright 2024 Project Los Angeles / Tegridy Code

#

#       Licensed under the Apache License, Version 2.0 (the "License");

#       you may not use this file except in compliance with the License.

#       You may obtain a copy of the License at

#

#           http://www.apache.org/licenses/LICENSE-2.0

#

#       Unless required by applicable law or agreed to in writing, software

#       distributed under the License is distributed on an "AS IS" BASIS,

#       WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

#       See the License for the specific language governing permissions and

#       limitations under the License.

#

################################################################################

################################################################################

#

# Critical dependencies

#

# !pip install numpy

# !pip install scipy

# !pip install matplotlib

# !pip install networkx[all]

# !pip3 install scikit-learn

#

################################################################################

#

# Future critical dependencies

#

# !pip install umap-learn

# !pip install alphashape

#

################################################################################

'''

################################################################################
# Modules imports
################################################################################

import os
from collections import Counter
from itertools import groupby

import numpy as np

import networkx as nx

from sklearn.manifold import TSNE
from sklearn import metrics
from sklearn.preprocessing import MinMaxScaler
from sklearn.decomposition import PCA

from scipy.ndimage import zoom
from scipy.spatial import distance_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
from scipy.stats import zscore

import matplotlib.pyplot as plt
from PIL import Image

################################################################################
# Constants
################################################################################

ALL_CHORDS_FILTERED = [[0], [0, 3], [0, 3, 5], [0, 3, 5, 8], [0, 3, 5, 9], [0, 3, 5, 10], [0, 3, 7],
                      [0, 3, 7, 10], [0, 3, 8], [0, 3, 9], [0, 3, 10], [0, 4], [0, 4, 6],
                      [0, 4, 6, 9], [0, 4, 6, 10], [0, 4, 7], [0, 4, 7, 10], [0, 4, 8], [0, 4, 9],
                      [0, 4, 10], [0, 5], [0, 5, 8], [0, 5, 9], [0, 5, 10], [0, 6], [0, 6, 9],
                      [0, 6, 10], [0, 7], [0, 7, 10], [0, 8], [0, 9], [0, 10], [1], [1, 4],
                      [1, 4, 6], [1, 4, 6, 9], [1, 4, 6, 10], [1, 4, 6, 11], [1, 4, 7],
                      [1, 4, 7, 10], [1, 4, 7, 11], [1, 4, 8], [1, 4, 8, 11], [1, 4, 9], [1, 4, 10],
                      [1, 4, 11], [1, 5], [1, 5, 8], [1, 5, 8, 11], [1, 5, 9], [1, 5, 10],
                      [1, 5, 11], [1, 6], [1, 6, 9], [1, 6, 10], [1, 6, 11], [1, 7], [1, 7, 10],
                      [1, 7, 11], [1, 8], [1, 8, 11], [1, 9], [1, 10], [1, 11], [2], [2, 5],
                      [2, 5, 8], [2, 5, 8, 11], [2, 5, 9], [2, 5, 10], [2, 5, 11], [2, 6], [2, 6, 9],
                      [2, 6, 10], [2, 6, 11], [2, 7], [2, 7, 10], [2, 7, 11], [2, 8], [2, 8, 11],
                      [2, 9], [2, 10], [2, 11], [3], [3, 5], [3, 5, 8], [3, 5, 8, 11], [3, 5, 9],
                      [3, 5, 10], [3, 5, 11], [3, 7], [3, 7, 10], [3, 7, 11], [3, 8], [3, 8, 11],
                      [3, 9], [3, 10], [3, 11], [4], [4, 6], [4, 6, 9], [4, 6, 10], [4, 6, 11],
                      [4, 7], [4, 7, 10], [4, 7, 11], [4, 8], [4, 8, 11], [4, 9], [4, 10], [4, 11],
                      [5], [5, 8], [5, 8, 11], [5, 9], [5, 10], [5, 11], [6], [6, 9], [6, 10],
                      [6, 11], [7], [7, 10], [7, 11], [8], [8, 11], [9], [10], [11]]

################################################################################

CHORDS_TYPES = ['WHITE', 'BLACK', 'UNKNOWN', 'MIXED WHITE', 'MIXED BLACK', 'MIXED GRAY']

################################################################################

WHITE_NOTES = [0, 2, 4, 5, 7, 9, 11]

################################################################################

BLACK_NOTES = [1, 3, 6, 8, 10]

################################################################################
# Helper functions
################################################################################

def tones_chord_type(tones_chord, 

                     return_chord_type_index=True,

                     ):

  """

  Returns tones chord type

  """

  WN = WHITE_NOTES
  BN = BLACK_NOTES
  MX = WHITE_NOTES + BLACK_NOTES


  CHORDS = ALL_CHORDS_FILTERED

  tones_chord = sorted(tones_chord)

  ctype = 'UNKNOWN'

  if tones_chord in CHORDS:

    if sorted(set(tones_chord) & set(WN)) == tones_chord:
      ctype = 'WHITE'

    elif sorted(set(tones_chord) & set(BN)) == tones_chord:
      ctype = 'BLACK'

    if len(tones_chord) > 1 and sorted(set(tones_chord) & set(MX)) == tones_chord:

      if len(sorted(set(tones_chord) & set(WN))) == len(sorted(set(tones_chord) & set(BN))):
        ctype = 'MIXED GRAY'

      elif len(sorted(set(tones_chord) & set(WN))) > len(sorted(set(tones_chord) & set(BN))):
        ctype = 'MIXED WHITE'

      elif len(sorted(set(tones_chord) & set(WN))) < len(sorted(set(tones_chord) & set(BN))):
        ctype = 'MIXED BLACK'

  if return_chord_type_index:
    return CHORDS_TYPES.index(ctype)

  else:
    return ctype

###################################################################################

def tone_type(tone, 

              return_tone_type_index=True

              ):

  """

  Returns tone type

  """

  tone = tone % 12

  if tone in BLACK_NOTES:
    if return_tone_type_index:
      return CHORDS_TYPES.index('BLACK')
    else:
      return "BLACK"

  else:
    if return_tone_type_index:
      return CHORDS_TYPES.index('WHITE')
    else:
      return "WHITE"

###################################################################################

def find_closest_points(points, return_points=True):

  """

  Find closest 2D points

  """

  coords = np.array(points)

  num_points = coords.shape[0]
  closest_matches = np.zeros(num_points, dtype=int)
  distances = np.zeros((num_points, num_points))

  for i in range(num_points):
      for j in range(num_points):
          if i != j:
              distances[i, j] = np.linalg.norm(coords[i] - coords[j])
          else:
              distances[i, j] = np.inf

  closest_matches = np.argmin(distances, axis=1)
  
  if return_points:
    points_matches = coords[closest_matches].tolist()
    return points_matches
  
  else:
    return closest_matches.tolist()

################################################################################

def reduce_dimensionality_tsne(list_of_valies,

                                n_comp=2,

                                n_iter=5000,

                                verbose=True

                              ):

  """

  Reduces the dimensionality of the values using t-SNE.

  """

  vals = np.array(list_of_valies)

  tsne = TSNE(n_components=n_comp,
              n_iter=n_iter,
              verbose=verbose)

  reduced_vals = tsne.fit_transform(vals)

  return reduced_vals.tolist()

################################################################################

def compute_mst_edges(similarity_scores_list):

  """

  Computes the Minimum Spanning Tree (MST) edges based on the similarity scores.

  """
  
  num_tokens = len(similarity_scores_list[0])

  graph = nx.Graph()

  for i in range(num_tokens):
      for j in range(i + 1, num_tokens):
          weight = 1 - similarity_scores_list[i][j]
          graph.add_edge(i, j, weight=weight)

  mst = nx.minimum_spanning_tree(graph)

  mst_edges = list(mst.edges(data=False))

  return mst_edges

################################################################################

def square_binary_matrix(binary_matrix, 

                         matrix_size=128,

                         interpolation_order=5,

                         return_square_matrix_points=False

                         ):

  """

  Reduces an arbitrary binary matrix to a square binary matrix

  """

  zoom_factors = (matrix_size / len(binary_matrix), 1)

  resized_matrix = zoom(binary_matrix, zoom_factors, order=interpolation_order)

  resized_matrix = (resized_matrix > 0.5).astype(int)

  final_matrix = np.zeros((matrix_size, matrix_size), dtype=int)
  final_matrix[:, :resized_matrix.shape[1]] = resized_matrix

  points = np.column_stack(np.where(final_matrix == 1)).tolist()

  if return_square_matrix_points:
    return points

  else:
    return resized_matrix

################################################################################

def square_matrix_points_colors(square_matrix_points):

  """

  Returns colors for square matrix points

  """

  cmap = generate_colors(12)

  chords = []
  chords_dict = set()
  counts = []

  for k, v in groupby(square_matrix_points, key=lambda x: x[0]):
    pgroup = [vv[1] for vv in v]
    chord = sorted(set(pgroup))
    tchord = sorted(set([p % 12 for p in chord]))
    chords_dict.add(tuple(tchord))
    chords.append(tuple(tchord))
    counts.append(len(pgroup))

  chords_dict = sorted(chords_dict)

  colors = []

  for i, c in enumerate(chords):
    colors.extend([cmap[round(sum(c) / len(c))]] * counts[i])

  return colors

################################################################################

def hsv_to_rgb(h, s, v):

  if s == 0.0:
      return v, v, v

  i = int(h*6.0)
  f = (h*6.0) - i
  p = v*(1.0 - s)
  q = v*(1.0 - s*f)
  t = v*(1.0 - s*(1.0-f))
  i = i%6
  
  return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i]

################################################################################

def generate_colors(n):
  return [hsv_to_rgb(i/n, 1, 1) for i in range(n)]

################################################################################

def add_arrays(a, b):
  return [sum(pair) for pair in zip(a, b)]

################################################################################

def calculate_similarities(lists_of_values, metric='cosine'):
  return metrics.pairwise_distances(lists_of_values, metric=metric).tolist()

################################################################################

def get_tokens_embeddings(x_transformer_model):
  return x_transformer_model.net.token_emb.emb.weight.detach().cpu().tolist()

################################################################################

def minkowski_distance_matrix(X, p=3):

  X = np.array(X)

  n = X.shape[0]
  dist_matrix = np.zeros((n, n))

  for i in range(n):
      for j in range(n):
          dist_matrix[i, j] = np.sum(np.abs(X[i] - X[j])**p)**(1/p)

  return dist_matrix.tolist()

################################################################################

def robust_normalize(values):

  values = np.array(values)
  q1 = np.percentile(values, 25)
  q3 = np.percentile(values, 75)
  iqr = q3 - q1

  filtered_values = values[(values >= q1 - 1.5 * iqr) & (values <= q3 + 1.5 * iqr)]

  min_val = np.min(filtered_values)
  max_val = np.max(filtered_values)
  normalized_values = (values - min_val) / (max_val - min_val)

  normalized_values = np.clip(normalized_values, 0, 1)

  return normalized_values.tolist()

################################################################################

def min_max_normalize(values):

  scaler = MinMaxScaler()

  return scaler.fit_transform(values).tolist()

################################################################################

def remove_points_outliers(points, z_score_threshold=3):

  points = np.array(points)

  z_scores = np.abs(zscore(points, axis=0))

  return points[(z_scores < z_score_threshold).all(axis=1)].tolist()

################################################################################

def generate_labels(lists_of_values, 

                    return_indices_labels=False

                    ):

  ordered_indices = list(range(len(lists_of_values)))
  ordered_indices_labels = [str(i) for i in ordered_indices]
  ordered_values_labels = [str(lists_of_values[i]) for i in ordered_indices]

  if return_indices_labels:
    return ordered_indices_labels
  
  else:
    return ordered_values_labels

################################################################################

def reduce_dimensionality_pca(list_of_values, n_components=2):

  """

  Reduces the dimensionality of the values using PCA.

  """

  pca = PCA(n_components=n_components)
  pca_data = pca.fit_transform(list_of_values)
  
  return pca_data.tolist()

def reduce_dimensionality_simple(list_of_values, 

                                 return_means=True,

                                 return_std_devs=True,

                                 return_medians=False,

                                 return_vars=False

                                 ):
  
  '''

  Reduces dimensionality of the values in a simple way

  '''

  array = np.array(list_of_values)
  results = []

  if return_means:
      means = np.mean(array, axis=1)
      results.append(means)

  if return_std_devs:
      std_devs = np.std(array, axis=1)
      results.append(std_devs)

  if return_medians:
      medians = np.median(array, axis=1)
      results.append(medians)

  if return_vars:
      vars = np.var(array, axis=1)
      results.append(vars)

  merged_results = np.column_stack(results)
  
  return merged_results.tolist()

################################################################################

def reduce_dimensionality_2d_distance(list_of_values, p=5):

  '''

  Reduces the dimensionality of the values using 2d distance

  '''

  values = np.array(list_of_values)

  dist_matrix = distance_matrix(values, values, p=p)

  mst = minimum_spanning_tree(dist_matrix).toarray()

  points = []

  for i in range(len(values)):
      for j in range(len(values)):
          if mst[i, j] > 0:
              points.append([i, j])

  return points

################################################################################

def normalize_to_range(values, n):
    
  min_val = min(values)
  max_val = max(values)
  
  range_val = max_val - min_val
  
  normalized_values = [((value - min_val) / range_val * 2 * n) - n for value in values]
  
  return normalized_values

################################################################################

def reduce_dimensionality_simple_pca(list_of_values, n_components=2):

  '''

  Reduces the dimensionality of the values using simple PCA

  '''

  reduced_values = []

  for l in list_of_values:

    norm_values = [round(v * len(l)) for v in normalize_to_range(l, (n_components+1) // 2)]

    pca_values = Counter(norm_values).most_common()
    pca_values = [vv[0] / len(l) for vv in pca_values]
    pca_values = pca_values[:n_components]
    pca_values = pca_values + [0] * (n_components - len(pca_values))

    reduced_values.append(pca_values)

  return reduced_values

################################################################################

def filter_and_replace_values(list_of_values, 

                              threshold, 

                              replace_value, 

                              replace_above_threshold=False

                              ):

  array = np.array(list_of_values)

  modified_array = np.copy(array)
  
  if replace_above_threshold:
    modified_array[modified_array > threshold] = replace_value
  
  else:
    modified_array[modified_array < threshold] = replace_value
  
  return modified_array.tolist()

################################################################################

def find_shortest_constellation_path(points, 

                                     start_point_idx, 

                                     end_point_idx,

                                     p=5,

                                     return_path_length=False,

                                     return_path_points=False,

                                     ):

    """

    Finds the shortest path between two points of the points constellation

    """

    points = np.array(points)

    dist_matrix = distance_matrix(points, points, p=p)

    mst = minimum_spanning_tree(dist_matrix).toarray()

    G = nx.Graph()

    for i in range(len(points)):
        for j in range(len(points)):
            if mst[i, j] > 0:
                G.add_edge(i, j, weight=mst[i, j])

    path = nx.shortest_path(G, 
                            source=start_point_idx, 
                            target=end_point_idx, 
                            weight='weight'
                            )
    
    path_length = nx.shortest_path_length(G, 
                                          source=start_point_idx, 
                                          target=end_point_idx, 
                                          weight='weight')
        
    path_points = points[np.array(path)].tolist()


    if return_path_points:
      return path_points

    if return_path_length:
      return path_length

    return path

################################################################################
# Core functions
################################################################################

def plot_ms_SONG(ms_song,

                  preview_length_in_notes=0,

                  block_lines_times_list = None,

                  plot_title='ms Song',

                  max_num_colors=129, 

                  drums_color_num=128, 

                  plot_size=(11,4), 

                  note_height = 0.75,

                  show_grid_lines=False,

                  return_plt = False,

                  timings_multiplier=1,

                  save_plt='',

                  save_only_plt_image=True,

                  save_transparent=False

                  ):

  '''ms SONG plot'''

  notes = [s for s in ms_song if s[0] == 'note']

  if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7):
    print('The song notes do not have patches information')
    print('Ploease add patches to the notes in the song')

  else:

    start_times = [(s[1] * timings_multiplier) / 1000 for s in notes]
    durations = [(s[2]  * timings_multiplier) / 1000 for s in notes]
    pitches = [s[4] for s in notes]
    patches = [s[6] for s in notes]

    colors = generate_colors(max_num_colors)
    colors[drums_color_num] = (1, 1, 1)

    pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000

    fig, ax = plt.subplots(figsize=plot_size)

    for start, duration, pitch, patch in zip(start_times, durations, pitches, patches):
        rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch])
        ax.add_patch(rect)

    ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))])
    ax.set_ylim([min(pitches)-1, max(pitches)+1])

    ax.set_facecolor('black')
    fig.patch.set_facecolor('white')

    if preview_length_in_notes > 0:
      ax.axvline(x=pbl, c='white')

    if block_lines_times_list:
      for bl in block_lines_times_list:
        ax.axvline(x=bl, c='white')
           
    if show_grid_lines:
      ax.grid(color='white')

    plt.xlabel('Time (s)', c='black')
    plt.ylabel('MIDI Pitch', c='black')

    plt.title(plot_title)

    if save_plt != '':
      if save_only_plt_image:
        plt.axis('off')
        plt.title('')
        plt.savefig(save_plt, 
                    transparent=save_transparent, 
                    bbox_inches='tight', 
                    pad_inches=0, 
                    facecolor='black'
                    )
        plt.close()
      
      else:
        plt.savefig(save_plt)
        plt.close()

    if return_plt:
      return fig

    plt.show()
    plt.close()

################################################################################

def plot_square_matrix_points(list_of_points,

                              list_of_points_colors,

                              plot_size=(7, 7),

                              point_size = 10,

                              show_grid_lines=False,

                              plot_title = 'Square Matrix Points Plot',

                              return_plt=False,

                              save_plt='',

                              save_only_plt_image=True,

                              save_transparent=False

                              ):

  '''Square matrix points plot'''

  fig, ax = plt.subplots(figsize=plot_size)

  ax.set_facecolor('black')

  if show_grid_lines:
    ax.grid(color='white')

  plt.xlabel('Time Step', c='black')
  plt.ylabel('MIDI Pitch', c='black')

  plt.title(plot_title)

  plt.scatter([p[0] for p in list_of_points], 
              [p[1] for p in list_of_points], 
              c=list_of_points_colors, 
              s=point_size
              )

  if save_plt != '':
    if save_only_plt_image:
      plt.axis('off')
      plt.title('')
      plt.savefig(save_plt, 
                  transparent=save_transparent, 
                  bbox_inches='tight', 
                  pad_inches=0, 
                  facecolor='black'
                  )
      plt.close()
    
    else:
      plt.savefig(save_plt)
      plt.close()

  if return_plt:
    return fig

  plt.show()
  plt.close()

################################################################################

def plot_cosine_similarities(lists_of_values,

                             plot_size=(7, 7),

                             save_plot=''

                            ):

  """

  Cosine similarities plot

  """

  cos_sim = metrics.pairwise_distances(lists_of_values, metric='cosine')

  plt.figure(figsize=plot_size)

  plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")

  im_ratio = cos_sim.shape[0] / cos_sim.shape[1]

  plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)

  plt.xlabel("Index")
  plt.ylabel("Index")

  plt.tight_layout()

  if save_plot != '':
    plt.savefig(save_plot, bbox_inches="tight")
    plt.close()

  plt.show()
  plt.close()

################################################################################

def plot_points_with_mst_lines(points, 

                               points_labels, 

                               points_mst_edges,

                               plot_size=(20, 20),

                               labels_size=24,

                               save_plot=''

                               ):

  """

  Plots 2D points with labels and MST lines.

  """

  plt.figure(figsize=plot_size)

  for i, label in enumerate(points_labels):
      plt.scatter(points[i][0], points[i][1])
      plt.annotate(label, (points[i][0], points[i][1]), fontsize=labels_size)

  for edge in points_mst_edges:
      i, j = edge
      plt.plot([points[i][0], points[j][0]], [points[i][1], points[j][1]], 'k-', alpha=0.5)

  plt.title('Points Map with MST Lines', fontsize=labels_size)
  plt.xlabel('X-axis', fontsize=labels_size)
  plt.ylabel('Y-axis', fontsize=labels_size)

  if save_plot != '':
    plt.savefig(save_plot, bbox_inches="tight")
    plt.close()

  plt.show()

  plt.close()

################################################################################

def plot_points_constellation(points, 

                              points_labels,

                              p=5,                              

                              plot_size=(15, 15),

                              labels_size=12,

                              show_grid=False,

                              save_plot=''

                              ):

  """

  Plots 2D points constellation

  """

  points = np.array(points)

  dist_matrix = distance_matrix(points, points, p=p)

  mst = minimum_spanning_tree(dist_matrix).toarray()

  plt.figure(figsize=plot_size)

  plt.scatter(points[:, 0], points[:, 1], color='blue')

  for i, label in enumerate(points_labels):
      plt.annotate(label, (points[i, 0], points[i, 1]), 
                   textcoords="offset points", 
                   xytext=(0, 10), 
                   ha='center',
                   fontsize=labels_size
                   )

  for i in range(len(points)):
      for j in range(len(points)):
          if mst[i, j] > 0:
              plt.plot([points[i, 0], points[j, 0]], [points[i, 1], points[j, 1]], 'k--')

  plt.xlabel('X-axis', fontsize=labels_size)
  plt.ylabel('Y-axis', fontsize=labels_size)
  plt.title('2D Coordinates with Minimum Spanning Tree', fontsize=labels_size)

  plt.grid(show_grid)

  if save_plot != '':
    plt.savefig(save_plot, bbox_inches="tight")
    plt.close()

  plt.show()

  plt.close()

################################################################################

def binary_matrix_to_images(matrix, 

                            step,

                            overlap,

                            output_folder='./Dataset/', 

                            output_img_prefix='image', 

                            output_img_ext='.png',

                            save_to_array=False,

                            verbose=True

                            ):

    if not save_to_array:

      if verbose:
        print('=' * 70)
        print('Checking output folder dir...')

      os.makedirs(os.path.dirname(output_folder), exist_ok=True)

      if verbose:
        print('Done!')

    if verbose:
      print('=' * 70)
      print('Writing images...')

    matrix = np.array(matrix, dtype=np.uint8)
    
    image_array = []
    
    for i in range(0, max(1, matrix.shape[0]-max(step, overlap)), overlap):
       
        submatrix = matrix[i:i+step, :]
        
        img = Image.fromarray(submatrix * 255).convert('1')
        
        if save_to_array:
          image_array.append(np.array(img))

        else:
          img.save(output_folder + output_img_prefix + '_' + str(matrix.shape[1]) + '_' + str(i).zfill(7) + output_img_ext)
  
    if verbose:
      print('Done!')
      print('=' * 70)
      print('Saved', (matrix.shape[0]-max(step, overlap)) // min(step, overlap)+1, 'imges!')
      print('=' * 70)

    if save_to_array:
        return np.array(image_array).tolist()

################################################################################

def images_to_binary_matrix(list_of_images):

    image_array = np.array(list_of_images)
   
    original_matrix = []
    
    for img in image_array:

        submatrix = np.array(img)
        original_matrix.extend(submatrix.tolist())
    
    return original_matrix

################################################################################
# [WIP] Future dev functions
################################################################################

'''

import umap



def reduce_dimensionality_umap(list_of_values,

                               n_comp=2,

                               n_neighbors=15,

                               ):



  """

  Reduces the dimensionality of the values using UMAP.

  """



  vals = np.array(list_of_values)



  umap_reducer = umap.UMAP(n_components=n_comp,

                           n_neighbors=n_neighbors,

                           n_epochs=5000,

                           verbose=True

                           )



  reduced_vals = umap_reducer.fit_transform(vals)



  return reduced_vals.tolist()

'''

################################################################################

'''

import alphashape

from shapely.geometry import Point

from matplotlib.tri import Triangulation, LinearTriInterpolator

from scipy.stats import zscore



#===============================================================================



coordinates = points



dist_matrix = minkowski_distance_matrix(coordinates, p=3)  # You can change the value of p as needed



# Centering matrix

n = dist_matrix.shape[0]

H = np.eye(n) - np.ones((n, n)) / n



# Apply double centering

B = -0.5 * H @ dist_matrix**2 @ H



# Eigen decomposition

eigvals, eigvecs = np.linalg.eigh(B)



# Sort eigenvalues and eigenvectors

idx = np.argsort(eigvals)[::-1]

eigvals = eigvals[idx]

eigvecs = eigvecs[:, idx]



# Select the top 2 eigenvectors

X_transformed = eigvecs[:, :2] * np.sqrt(eigvals[:2])



#===============================================================================



src_points = X_transformed

src_values = np.array([[p[1]] for p in points]) #np.random.rand(X_transformed.shape[0])



#===============================================================================



# Normalize the points to the range [0, 1]

scaler = MinMaxScaler()

points_normalized = scaler.fit_transform(src_points)



values_normalized = custom_normalize(src_values)



# Remove outliers based on z-score

z_scores = np.abs(zscore(points_normalized, axis=0))

filtered_points = points_normalized[(z_scores < 3).all(axis=1)]

filtered_values = values_normalized[(z_scores < 3).all(axis=1)]



# Compute the concave hull (alpha shape)

alpha = 8  # Adjust alpha as needed

hull = alphashape.alphashape(filtered_points, alpha)



# Create a triangulation

tri = Triangulation(filtered_points[:, 0], filtered_points[:, 1])



# Interpolate the values on the triangulation

interpolator = LinearTriInterpolator(tri, filtered_values[:, 0])

xi, yi = np.meshgrid(np.linspace(0, 1, 100), np.linspace(0, 1, 100))

zi = interpolator(xi, yi)



# Mask out points outside the concave hull

mask = np.array([hull.contains(Point(x, y)) for x, y in zip(xi.flatten(), yi.flatten())])

zi = np.ma.array(zi, mask=~mask.reshape(zi.shape))



# Plot the filled contour based on the interpolated values

plt.contourf(xi, yi, zi, levels=50, cmap='viridis')



# Plot the original points

#plt.scatter(filtered_points[:, 0], filtered_points[:, 1], c=filtered_values, edgecolors='k')



plt.title('Filled Contour Plot with Original Values')

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.colorbar(label='Value')

plt.show()

'''

################################################################################
#
# This is the end of TPLOTS Python modules
#
################################################################################