File size: 45,636 Bytes
08876fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 |
#! /usr/bin/python3
r'''############################################################################
################################################################################
#
#
# Tegridy Cupy Python Module (TCUPY)
# Version 1.0
#
# Project Los Angeles
#
# Tegridy Code 2025
#
# https://github.com/asigalov61/tegridy-tools
#
#
################################################################################
#
# Copyright 2024 Project Los Angeles / Tegridy Code
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
################################################################################
################################################################################
#
# Critical dependencies
#
# !pip install cupy-cuda12x
# !pip install numpy==1.24.4
#
################################################################################
'''
################################################################################
print('=' * 70)
print('Loading module...')
print('Please wait...')
print('=' * 70)
################################################################################
import sys
import os
################################################################################
try:
import cupy as cp
import cupy as np
print('=' * 70)
print('CuPy is found!')
print('Will use CuPy and GPU for processing!')
print('=' * 70)
except ImportError as e:
print(f"Error: Could not import CuPy. Details: {e}")
# Handle the error, such as providing a fallback or exiting the program
# For example:
print("Please make sure CuPy is installed.")
print('=' * 70)
raise RuntimeError("CuPy could not be loaded!") from e
################################################################################
from collections import defaultdict, deque
from typing import Optional, Tuple, Dict, Any, List
################################################################################
# Constants
MEMORY_LEN = 12 # Autoregressive context length
SEQUENCE_LENGTH = 32 # Each sequence has 24 triplets
# Baseline penalty values:
REPETITION_PENALTY = (1.0, 1.0, 1.0) # base repetition penalty per element
SPIKE_PENALTY_STRENGTH = (1.0, 1.0, 1.0) # base spike penalty strength per element
SPIKE_SIGMA = (1.0, 1.0, 1.0) # baseline sigma value per element (minimum allowed)
###################################################################################
def find_numpy_array(src_array, trg_array):
"""
Finds 1D numpy array in 2D numpy array
"""
match_mask = np.all(src_array == trg_array, axis=1)
return np.where(match_mask)[0]
###################################################################################
def vertical_list_search(src_list, trg_list):
"""
For each vertical window of consecutive rows of height len(trg_list) in src_list,
this function checks whether for every offset j (0 <= j < len(trg_list)) the row
at index (window_start + j) contains trg_list[j].
It returns a list of windows (each a list of consecutive row indices) that meet this condition.
"""
if not src_list or not trg_list:
return []
n = len(src_list)
k = len(trg_list)
num_windows = n - k + 1
if num_windows <= 0:
return []
# Determine the maximum row length.
max_len = max(len(row) for row in src_list)
# Determine a fill value guaranteed to be less than any valid value.
global_min = min(min(row) for row in src_list if row)
fill_value = global_min - 1
# Build a padded 2D array A (shape n x max_len) from src_list.
A = np.full((n, max_len), fill_value, dtype=np.int64)
for i, row in enumerate(src_list):
L = len(row)
A[i, :L] = row
# For each unique target in trg_list, compute a Boolean vector of length n.
# present[t][i] will be True if A[i, :] contains t, else False.
unique_targets = set(trg_list)
present_dict = {}
for t in unique_targets:
# Compute along axis=1 so that for each row we see if any element equals t.
present_dict[t] = np.any(A == t, axis=1)
# Build a Boolean array B of shape (k, num_windows) where for each offset j,
# B[j, s] = present_dict[ trg_list[j] ][s + j] for each window starting index s.
B = np.empty((k, num_windows), dtype=bool)
for j in range(k):
t = trg_list[j]
# For a vertical window starting at s, row s+j should contain t.
B[j, :] = present_dict[t][j: j + num_windows]
# A window is valid if all k rows in that window contain the required target.
valid_windows_mask = np.all(B, axis=0)
valid_starts = np.nonzero(valid_windows_mask)[0]
# Create output windows (each as a list of consecutive row indices).
result = [list(range(s, s + k)) for s in valid_starts]
return result
###################################################################################
def pack_sequences(train_data, pad_val=-1):
"""
Packs a list of variable-length token sequences into a 2D CuPy array.
This version computes lengths and builds the padded array and mask entirely on GPU.
It converts each sequence into a CuPy array, concatenates them, and assigns tokens in one shot.
Returns:
batch: a CuPy array of shape (n, max_len)
lengths: a CuPy array of shape (n,) containing each sequence's length.
"""
n = len(train_data)
# Compute lengths of each sequence and convert to a CuPy array.
lengths = cp.array([len(seq) for seq in train_data], dtype=cp.int64)
max_len_val = int(cp.max(lengths).get())
# Allocate the padded 2D array filled with pad_val.
batch = cp.full((n, max_len_val), pad_val, dtype=cp.int64)
# Create a boolean mask: for each row, positions less than the sequence length are valid.
mask = cp.arange(max_len_val).reshape(1, max_len_val) < lengths.reshape(n, 1)
# Convert each sequence to a CuPy array and concatenate them.
sequences = [cp.array(seq, dtype=cp.int64) for seq in train_data]
flat = cp.concatenate(sequences)
# Fill in the valid positions.
batch[mask] = flat
return batch, lengths
###################################################################################
def count_best_pair_gpu(batch, lengths, factor, pad_val=-1):
"""
Given the entire GPU-resident packed data, compute the most frequent
adjacent pair (encoded as: pair_val = first * factor + second) on GPU.
"""
n, L = batch.shape
cols = cp.arange(L - 1, dtype=cp.int64)
cols_expanded = cp.broadcast_to(cols, (n, L - 1))
valid_mask = cols_expanded < cp.reshape(lengths, (n, 1)) - 1
first_tokens = batch[:, :L - 1]
second_tokens = batch[:, 1:L]
valid_first = first_tokens[valid_mask]
valid_second = second_tokens[valid_mask]
pairs = valid_first * factor + valid_second
if pairs.size == 0:
return None
sorted_pairs = cp.sort(pairs)
diff = cp.diff(sorted_pairs)
boundaries = cp.nonzero(diff)[0] + 1
group_starts = cp.concatenate([cp.array([0], dtype=cp.int64), boundaries])
group_ends = cp.concatenate([boundaries, cp.array([sorted_pairs.size], dtype=cp.int64)])
group_counts = group_ends - group_starts
max_idx = int(cp.argmax(group_counts))
best_pair_enc = int(sorted_pairs[group_starts[max_idx]])
best_freq = int(group_counts[max_idx])
first = best_pair_enc // factor
second = best_pair_enc % factor
return (first, second, best_freq)
###################################################################################
merge_kernel_code = r'''
extern "C" __global__
void merge_pair_kernel(const long* input, long* output,
const long* input_lengths, long* output_lengths,
const long num_rows, const long num_cols,
const long a, const long b, const long new_token,
const long pad_val) {
int row = blockIdx.x * blockDim.x + threadIdx.x;
if (row >= num_rows) return;
long in_length = input_lengths[row];
long out_idx = 0;
bool skip_next = false;
for (long i = 0; i < in_length; i++) {
if (skip_next) {
skip_next = false;
continue;
}
long token = input[row * num_cols + i];
if (i < in_length - 1 && token == a && input[row * num_cols + i + 1] == b) {
output[row * num_cols + out_idx] = new_token;
out_idx++;
skip_next = true;
} else {
output[row * num_cols + out_idx] = token;
out_idx++;
}
}
output_lengths[row] = out_idx;
for (long j = out_idx; j < num_cols; j++) {
output[row * num_cols + j] = pad_val;
}
}
'''
merge_kernel = cp.RawKernel(merge_kernel_code, 'merge_pair_kernel')
###################################################################################
def learn_bpe_codes_gpu(train_data, vocab_size=4096, max_merges=None, pad_val=-1):
"""
Learn BPE merge rules completely on GPU.
The training data is packed once (using the vectorized pack_sequences).
On each merge iteration, the best adjacent pair is computed on GPU and then merged
into a new token via a custom merge kernel (with double-buffering).
Returns:
codes: a list of merge rules as ((first, second), new_token)
final_data: the merged training data (list of sequences)
"""
# Pack the entire dataset onto GPU.
batch, lengths = pack_sequences(train_data, pad_val)
n, L = batch.shape
# Initialize vocabulary and the next available token.
initial_vocab = {token for seq in train_data for token in seq}
next_token = max(initial_vocab) + 1
codes = []
merge_count = 0
pbar = tqdm.tqdm(total=max_merges if max_merges is not None else None,
desc="Learning BPE Codes (GPU)", leave=True)
# Preallocate buffers for double-buffering.
work_batch = cp.empty_like(batch)
work_lengths = cp.empty_like(lengths)
input_batch = batch
input_lengths = lengths
threads_per_block = 128
blocks = (n + threads_per_block - 1) // threads_per_block
while next_token < vocab_size and (max_merges is None or merge_count < max_merges):
# Early stop if all sequences have collapsed (checked on GPU).
if bool(cp.all(input_lengths == 1)):
pbar.write("All sequences have collapsed; stopping early.")
break
factor = next_token # by construction, every token is < next_token
best = count_best_pair_gpu(input_batch, input_lengths, factor, pad_val)
if best is None:
pbar.write("No mergeable pairs found; stopping early.")
break
best_pair = (best[0], best[1])
best_freq = best[2]
if best_freq < 2:
pbar.write("Best pair frequency is less than 2; stopping early.")
break
codes.append((best_pair, next_token))
# Launch the merge kernel.
merge_kernel((blocks,), (threads_per_block,),
(input_batch,
work_batch,
input_lengths,
work_lengths,
cp.int64(n),
cp.int64(L),
cp.int64(best_pair[0]),
cp.int64(best_pair[1]),
cp.int64(next_token),
cp.int64(pad_val)))
# Swap buffers for double-buffering.
input_batch, work_batch = work_batch, input_batch
input_lengths, work_lengths = work_lengths, input_lengths
next_token += 1
merge_count += 1
pbar.update(1)
pbar.close()
final_batch = cp.asnumpy(input_batch)
final_lengths = cp.asnumpy(input_lengths)
final_data = [final_batch[i, :final_lengths[i]].tolist() for i in range(n)]
return codes, final_data
###################################################################################
fused_merge_kernel_code = r'''
extern "C" __global__
void fused_merge_kernel(long* data_in, long* data_out, long* lengths, const long pad_val,
const long num_rows, const long max_len, const long num_merges, const long* merge_rules) {
int row = blockIdx.x * blockDim.x + threadIdx.x;
if (row >= num_rows) return;
long base = row * max_len;
long cur_len = lengths[row];
long* cur = data_in + base;
long* other = data_out + base;
// Process each merge rule sequentially.
for (int m = 0; m < num_merges; m++) {
long a = merge_rules[3 * m];
long b = merge_rules[3 * m + 1];
long new_token = merge_rules[3 * m + 2];
long out_idx = 0;
for (int i = 0; i < cur_len; i++) {
if (i < cur_len - 1 && cur[i] == a && cur[i+1] == b) {
other[out_idx] = new_token;
out_idx++;
i++; // Skip the next token.
} else {
other[out_idx] = cur[i];
out_idx++;
}
}
cur_len = out_idx;
// Swap pointers for the next merge.
long* temp = cur;
cur = other;
other = temp;
}
lengths[row] = cur_len;
// Pad the remaining positions with pad_val.
for (int i = cur_len; i < max_len; i++) {
cur[i] = pad_val;
}
// If the final result is not in data_in, copy back.
if (cur != data_in + base) {
for (int i = 0; i < cur_len; i++) {
data_in[base + i] = cur[i];
}
}
}
'''
fused_kernel = cp.RawKernel(fused_merge_kernel_code, 'fused_merge_kernel')
###################################################################################
def retokenize_train_data_fused_gpu(train_data, codes, pad_val=-1):
"""
Retokenize training data using the fully fused GPU kernel.
The entire training dataset is first packed into GPU memory (using pack_sequences).
All learned merge rules (provided in 'codes') are applied via a single kernel launch.
Each GPU thread processes one sequence by applying all merge rules sequentially.
Returns:
tokenized_data: list of retokenized sequences.
"""
# Pack the data.
batch, lengths = pack_sequences(train_data, pad_val)
n, max_len = batch.shape
# Build a flattened merge_rules array using CuPy.
if len(codes) > 0:
merge_rules_list = [[rule[0][0], rule[0][1], rule[1]] for rule in codes]
merge_rules_gpu = cp.array(merge_rules_list, dtype=cp.int64)
merge_rules_gpu = merge_rules_gpu.reshape(-1)
else:
merge_rules_gpu = cp.empty((0,), dtype=cp.int64)
num_merges = merge_rules_gpu.shape[0] // 3
# Preallocate a scratch buffer.
scratch = cp.empty_like(batch)
threads_per_block = 128
blocks = (n + threads_per_block - 1) // threads_per_block
# Launch the fused kernel.
fused_kernel((blocks,), (threads_per_block,),
(batch, scratch, lengths, cp.int64(pad_val),
cp.int64(n), cp.int64(max_len), cp.int64(num_merges), merge_rules_gpu))
final_batch = cp.asnumpy(batch)
final_lengths = cp.asnumpy(lengths)
tokenized_data = [final_batch[i, :final_lengths[i]].tolist() for i in range(n)]
return tokenized_data
###################################################################################
def bpe_encode(seq, codes):
"""
Iteratively encodes a sequence using BPE merge rules provided in a dictionary.
Args:
seq (list): A list of tokens (e.g. integers) representing the input sequence.
codes (dict): A dictionary mapping token pairs (a tuple of two tokens)
to a merged token. For example:
{ (1, 2): 100, (100, 3): 101 }
Returns:
list: The encoded sequence after applying all possible merges.
The function repeatedly scans the entire sequence from left to right;
whenever it finds a contiguous token pair that exists as a key in the
codes dict, it replaces that pair with the merged token. This pass is
repeated until no more merges are possible.
"""
if type(codes) == list:
codes = dict(codes)
encoded_seq = seq.copy() # work on a copy so as not to modify the original
done = False
while not done:
new_seq = []
i = 0
changed = False
while i < len(encoded_seq):
# If a merge is possible, merge the two tokens.
if i < len(encoded_seq) - 1 and (encoded_seq[i], encoded_seq[i + 1]) in codes:
new_seq.append(codes[(encoded_seq[i], encoded_seq[i + 1])])
i += 2 # Skip the next token as it was merged.
changed = True
else:
new_seq.append(encoded_seq[i])
i += 1
# If no merges occurred in this pass, exit the loop.
if not changed:
done = True
encoded_seq = new_seq
return encoded_seq
###################################################################################
def bpe_decode(seq, codes):
"""
Decodes a sequence encoded with BPE merge rules defined in a codes dictionary.
Args:
seq (list): The encoded sequence (a list of tokens).
codes (dict): A dictionary mapping token pairs to the merged token, used during encoding.
Returns:
list: The fully decoded sequence, with all merged tokens recursively expanded.
The function constructs a reverse mapping that converts a merged token back into
its constituent pair. Each token in the sequence is then recursively expanded.
"""
if type(codes) == list:
codes = dict(codes)
# Build the reverse mapping: key = merged token, value = tuple (original token pair)
reverse_mapping = {merged: pair for pair, merged in codes.items()}
def recursive_expand(token):
# If the token is a merged token, expand it recursively.
if token in reverse_mapping:
a, b = reverse_mapping[token]
return recursive_expand(a) + recursive_expand(b)
else:
return [token]
decoded_seq = []
for token in seq:
decoded_seq.extend(recursive_expand(token))
return decoded_seq
###################################################################################
def ensure_triplet(val: Any, name: str = "") -> Tuple[float, float, float]:
"""
Ensure the given parameter is returned as a triplet.
If provided as a scalar, promote it to a triplet.
"""
if np.isscalar(val):
return (float(val), float(val), float(val))
elif isinstance(val, (list, tuple)) and len(val) == 3:
return tuple(float(x) for x in val)
else:
raise ValueError(f"{name} must be a scalar or a sequence of 3 numbers.")
###################################################################################
REP_PENALTY = ensure_triplet(REPETITION_PENALTY, "REPETITION_PENALTY")
SPIKE_STRENGTH = ensure_triplet(SPIKE_PENALTY_STRENGTH, "SPIKE_PENALTY_STRENGTH")
SPIKE_SIG = ensure_triplet(SPIKE_SIGMA, "SPIKE_SIGMA")
###################################################################################
def sliding_window_view_alternative(a: np.ndarray, window_length: int) -> np.ndarray:
"""
Create a sliding-window view (without copying) of an array.
Expected input shape: (n, L, d) and returns: (n, L - window_length + 1, window_length, d)
"""
n, L, d = a.shape
new_shape = (n, L - window_length + 1, window_length, d)
new_strides = (a.strides[0], a.strides[1], a.strides[1], a.strides[2])
return np.lib.stride_tricks.as_strided(a, shape=new_shape, strides=new_strides)
###################################################################################
def build_ngram_mapping(data: np.ndarray, memory_len: int) -> Dict[Any, Dict[Any, int]]:
"""
Build an n-gram mapping from a context (a sequence of triplets) to candidate triplets with frequencies.
"""
n, L, d = data.shape
window_length = memory_len + 1 # context (memory) + candidate
windows = sliding_window_view_alternative(data, window_length)
# windows shape: (n, L - window_length + 1, window_length, d)
# Split windows into context (first memory_len triplets) and candidates (last triplet)
contexts = windows[:, :, :memory_len, :] # shape: (n, num_windows, memory_len, d)
candidates = windows[:, :, memory_len, :] # shape: (n, num_windows, d)
# Flatten the batch and window dimensions.
contexts_flat = contexts.reshape(-1, memory_len, d)
candidates_flat = candidates.reshape(-1, d)
mapping = defaultdict(lambda: defaultdict(int))
total_windows = contexts_flat.shape[0]
for context_arr, candidate_arr in tqdm.tqdm(
zip(contexts_flat, candidates_flat),
total=total_windows,
desc="Building n-gram mapping"):
context_key = tuple(map(tuple, context_arr)) # use a tuple of triplets as the key
candidate_val = tuple(candidate_arr)
mapping[context_key][candidate_val] += 1
return {context: dict(candidates) for context, candidates in mapping.items()}
###################################################################################
def precompute_mapping_lookup(mapping: Dict[Any, Dict[Any, int]]) -> Dict[Any, Tuple[Tuple[Any, ...], np.ndarray]]:
"""
Converts the mapping into a lookup table: context -> (tuple(candidates), frequencies_array).
"""
mapping_lookup = {}
for context, candidate_dict in tqdm.tqdm(mapping.items(), desc="Precomputing lookup"):
candidates = tuple(candidate_dict.keys())
frequencies = np.array(list(candidate_dict.values()), dtype=np.float64)
mapping_lookup[context] = (candidates, frequencies)
return mapping_lookup
###################################################################################
def build_training_sequences_set(data: np.ndarray) -> set:
"""
Build a set of training sequences (each as a tuple of triplets) for uniqueness checking.
"""
return {tuple(map(tuple, seq)) for seq in data}
###################################################################################
def generate_sequence_optimized(mapping_lookup: Dict[Any, Tuple[Tuple[Any, ...], np.ndarray]],
training_set: set,
memory_len: int,
sequence_length: int = 24,
max_attempts: int = 1000) -> Optional[Tuple[Tuple[float, float, float], ...]]:
"""
Autoregressively generate a new, unique sequence using the precomputed mapping lookup.
The invariant maintained is: the second element of one triplet is never greater than the first element
of the following triplet.
Two dynamic adjustments are applied for candidate selection:
1. **Dynamic Repetition Penalty:**
For each candidate, count the occurrences of each element in the generated sequence.
Rather than a fixed penalty, this repetition penalty scales with the ratio
(current_length / sequence_length). In log-space, it subtracts:
(current_length / sequence_length) * sum_k(count[k] * log(REP_PENALTY[k])
2. **Dynamic Spike (Variance) Penalty:**
For each candidate, compute the squared difference from the running average for each element.
Use a dynamic sigma that is the maximum between the running standard deviation and the baseline.
The penalty term for each element is:
SPIKE_STRENGTH[k] * ((cand[k] - running_avg[k])^2) / (2 * dynamic_sigma[k]^2)
The overall spike penalty is the sum of the three terms and is subtracted from the candidate’s log frequency.
The resulting candidate log score is computed as:
log(candidate_frequency) - rep_penalty_component - spike_penalty_component
A numerical stable softmax is then applied over these scores to determine the probability for drawing a candidate.
If no candidate passing the invariant is found, the attempt is aborted.
Parameters:
mapping_lookup: Precomputed lookup mapping (context → (candidates, frequencies)).
training_set: Set of training sequences to ensure uniqueness.
memory_len: Number of triplets used as context.
sequence_length: Desired length of the generated sequence.
max_attempts: Maximum number of generation attempts.
Returns:
A new unique sequence (tuple of triplets) that respects the invariant, or None if not found.
"""
mapping_keys = list(mapping_lookup.keys())
num_keys = len(mapping_keys)
for attempt in range(max_attempts):
# Select a seed context randomly (from training data so that the invariant holds).
seed = mapping_keys[np.random.randint(0, num_keys)]
generated_sequence: List[Tuple[float, float, float]] = list(seed)
valid_generation = True
while len(generated_sequence) < sequence_length:
last_triplet = generated_sequence[-1]
current_context = tuple(generated_sequence[-memory_len:]) # context as tuple of triplets
candidate_found = False
if current_context in mapping_lookup:
candidates, frequencies = mapping_lookup[current_context]
# Filter candidates by invariant:
# Candidate's first element must be >= last triplet's second element.
valid_indices = [i for i, cand in enumerate(candidates) if cand[0] >= last_triplet[1]]
if valid_indices:
# Filter candidates and their associated frequencies.
filtered_freqs = frequencies[valid_indices]
filtered_candidates = [candidates[i] for i in valid_indices]
# Convert candidates into a NumPy array for vectorized operations.
candidate_array = np.array(filtered_candidates, dtype=np.float64) # shape: (n_candidates, 3)
# Prepare generation history as array.
generated_array = np.array(generated_sequence, dtype=np.float64) # shape: (T, 3)
current_length = generated_array.shape[0]
# Running average and standard deviation for dynamic spike adjustment.
running_avg = np.mean(generated_array, axis=0) # shape: (3,)
running_std = np.std(generated_array, axis=0) # shape: (3,)
# Dynamic sigma: ensure a minimum sigma value.
dynamic_sigma = np.maximum(running_std, np.array(SPIKE_SIG))
# --- Compute Repetition Penalty ---
# For each candidate, count the number of occurrences for each element along the corresponding column.
rep_counts = np.array([
[np.sum(generated_array[:, k] == candidate_array[i, k]) for k in range(3)]
for i in range(candidate_array.shape[0])
]) # shape: (n_candidates, 3)
# The repetition penalty in log-space.
rep_penalty_term = np.sum(rep_counts * np.log(np.array(REP_PENALTY)) *
(current_length / sequence_length), axis=1) # shape: (n_candidates,)
# --- Compute Spike (Variance) Penalty ---
# Compute the difference per candidate from the running average.
diff = candidate_array - running_avg # shape: (n_candidates, 3)
spike_penalty_term = np.sum(np.array(SPIKE_STRENGTH) * (diff**2) / (2 * (dynamic_sigma**2)),
axis=1) # shape: (n_candidates,)
# --- Compute Candidate Log-Scores ---
# Use np.log on frequencies (they are positive by construction).
log_freq = np.log(filtered_freqs)
log_scores = log_freq - rep_penalty_term - spike_penalty_term
# --- Softmax in Log-space (stable computation) ---
max_log = np.max(log_scores)
exp_scores = np.exp(log_scores - max_log)
probabilities = exp_scores / np.sum(exp_scores)
# Choose the next candidate using advanced probabilities.
chosen_idx = np.random.choice(len(filtered_candidates), p=probabilities)
next_triplet = filtered_candidates[chosen_idx]
candidate_found = True
if not candidate_found:
# Abort this generation attempt if no valid candidate is available.
valid_generation = False
break
generated_sequence.append(next_triplet)
# Ensure the final sequence meets the invariant and is unique.
if valid_generation and len(generated_sequence) == sequence_length:
new_sequence = tuple(generated_sequence)
invariant_ok = all(a[1] <= b[0] for a, b in zip(new_sequence, new_sequence[1:]))
if invariant_ok and new_sequence not in training_set:
return new_sequence
return None
###################################################################################
def analyze_generated_sequence(sequence: tuple, mapping_lookup: dict, memory_len: int) -> tuple:
"""
Analyze the generated sequence and return several useful statistics
as both a dictionary and as a nicely formatted string report.
Statistics Computed:
- unigram_diversity: Ratio of unique triplets to total triplets.
- repetition_rate: Fraction of repeated triplets.
- bigram_diversity: Ratio of unique consecutive pairs to total pairs.
- max_consecutive_repetitions: Maximum number of identical consecutive triplets.
- avg_candidate_probability (overfit rate): For the transitions (using a sliding window of size
MEMORY_LEN as context followed by candidate), the average probability of the chosen candidate
as per the training mapping.
Additional Analytics:
- element_stats: For each element (index 0, 1, 2) in a triplet, includes:
* mean, standard deviation, minimum, maximum, and average consecutive absolute difference.
- avg_transition_entropy: The average entropy of the candidate distributions (from mapping_lookup)
for each transition context.
- context_coverage: The fraction of transitions (based on context of length MEMORY_LEN) that are found
in the mapping_lookup.
Parameters:
sequence: Generated sequence (tuple of triplets).
mapping_lookup: Precomputed mapping lookup.
memory_len: The context length used.
Returns:
A tuple containing:
(stats_dict, stats_report_string)
"""
stats = {}
seq_len = len(sequence)
# --- Basic Statistics ---
# Unigram.
unique_triplets = len(set(sequence))
stats["unigram_diversity"] = unique_triplets / seq_len
stats["repetition_rate"] = 1 - (unique_triplets / seq_len)
# Bigram.
bigrams = [(sequence[i], sequence[i+1]) for i in range(seq_len - 1)]
unique_bigrams = len(set(bigrams))
stats["bigram_diversity"] = unique_bigrams / (seq_len - 1)
# Maximum consecutive repetitions.
max_consecutive = 1
current_consecutive = 1
for i in range(1, seq_len):
if sequence[i] == sequence[i-1]:
current_consecutive += 1
if current_consecutive > max_consecutive:
max_consecutive = current_consecutive
else:
current_consecutive = 1
stats["max_consecutive_repetitions"] = max_consecutive
# Avg Candidate Probability (Overfit Rate)
overfit_probs = []
for i in range(memory_len, seq_len):
context = tuple(sequence[i - memory_len: i])
candidate = sequence[i]
if context in mapping_lookup:
candidates, frequencies = mapping_lookup[context]
total_freq = np.sum(frequencies)
try:
idx = candidates.index(candidate)
cand_prob = frequencies[idx] / total_freq
overfit_probs.append(cand_prob)
except ValueError:
pass
stats["avg_candidate_probability"] = np.mean(overfit_probs) if overfit_probs else None
# --- Additional Analytics ---
# 1. Element-Level Statistics.
seq_arr = np.array(sequence) # shape: (seq_len, 3)
element_stats = {}
for dim in range(seq_arr.shape[1]):
values = seq_arr[:, dim]
mean_val = np.mean(values)
std_val = np.std(values)
min_val = np.min(values)
max_val = np.max(values)
# Calculate average absolute difference between consecutive values:
diffs = np.abs(np.diff(values))
avg_diff = np.mean(diffs) if diffs.size > 0 else 0
element_stats[f"element_{dim}"] = {
"mean": mean_val,
"std": std_val,
"min": min_val,
"max": max_val,
"avg_consecutive_diff": avg_diff,
}
stats["element_stats"] = element_stats
# 2. Transition Entropy:
entropies = []
valid_transitions = 0
for i in range(memory_len, seq_len):
context = tuple(sequence[i - memory_len: i])
if context in mapping_lookup:
candidates, freqs = mapping_lookup[context]
total_freq = np.sum(freqs)
if total_freq > 0:
probs = freqs / total_freq
# Add a very small constant to avoid log(0)
epsilon = 1e-10
entropy = -np.sum(probs * np.log(probs + epsilon))
entropies.append(entropy)
valid_transitions += 1
stats["avg_transition_entropy"] = np.mean(entropies) if entropies else None
# 3. Context Coverage:
total_transitions = seq_len - memory_len
stats["context_coverage"] = (valid_transitions / total_transitions) if total_transitions > 0 else None
# --- Build a Pretty Report String ---
sep_line = "-" * 60
lines = []
lines.append(sep_line)
lines.append("Sequence Analytics Report:")
lines.append(sep_line)
lines.append("Overall Statistics:")
lines.append(f" Unigram Diversity : {stats['unigram_diversity']:.3f}")
lines.append(f" Repetition Rate : {stats['repetition_rate']:.3f}")
lines.append(f" Bigram Diversity : {stats['bigram_diversity']:.3f}")
lines.append(f" Max Consecutive Repetitions: {stats['max_consecutive_repetitions']}")
cand_prob = stats["avg_candidate_probability"]
cand_prob_str = f"{cand_prob:.3f}" if cand_prob is not None else "N/A"
lines.append(f" Avg Candidate Probability : {cand_prob_str}")
lines.append("")
lines.append("Element-Level Statistics:")
for dim in sorted(element_stats.keys()):
ed = element_stats[dim]
lines.append(f" {dim.capitalize()}:")
lines.append(f" Mean : {ed['mean']:.3f}")
lines.append(f" Std Dev : {ed['std']:.3f}")
lines.append(f" Min : {ed['min']:.3f}")
lines.append(f" Max : {ed['max']:.3f}")
lines.append(f" Avg Consecutive Diff : {ed['avg_consecutive_diff']:.3f}")
lines.append("")
lines.append("Transition Statistics:")
avg_entropy = stats["avg_transition_entropy"]
entropy_str = f"{avg_entropy:.3f}" if avg_entropy is not None else "N/A"
lines.append(f" Average Transition Entropy: {entropy_str}")
cc = stats["context_coverage"]
cc_str = f"{cc:.3f}" if cc is not None else "N/A"
lines.append(f" Context Coverage : {cc_str}")
lines.append(sep_line)
stats_report = "\n".join(lines)
# Return both the dictionary and the formatted report string.
return stats, stats_report
###################################################################################
def autoregressive_generate(start_seq, mel_tones, trg_array, trg_matches_array, num_new_tokens, chunk_len=5):
# Convert sequences to NumPy arrays.
current_seq = np.array(start_seq, dtype=int) # Shape: (num_tokens, token_dim)
trg_array = np.array(trg_array, dtype=int) # Shape: (num_candidates, 2, token_dim)
start_len = len(start_seq)
midx = start_len-1
# Deque for sliding memory of candidate pairs (immutable tuples).
recent_candidates = deque(maxlen=5)
while (len(current_seq) - start_len) < num_new_tokens:
midx += 1
# Get the last two tokens as context.
context = current_seq[-(chunk_len-1):] # Shape: (2, token_dim)
sli = 0
msize = 0
ctx = context[:, :-1].reshape(1, -1)
trg_mat_arr = trg_matches_array
while msize < 8:
print('=== Slice', sli)
# Compare context with candidates in trg_array.
match_mask = np.all(ctx == trg_mat_arr, axis=1)
match_indices = np.where(match_mask)[0]
msize = match_indices.size
if msize < 8:
sli += 1
ctx = context[:, :-1].reshape(1, -1)[:, sli:]
trg_mat_arr = trg_matches_array[:, :-sli]
if match_indices.size == 0:
if len(current_seq) > start_len:
#tones_chord = sorted([mel_tones[midx], (mel_tones[midx]+7) % 12])
tones_chord = sorted([mel_tones[midx]])
new_tuple = [[mel_tones[midx], TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)]]
current_seq = np.concatenate((current_seq, new_tuple), axis=0)
print('Subbed', midx)
continue
# From the matching candidates, filter out those whose candidate pair is in recent memory.
available_candidates = []
cseen = []
for idx in match_indices:
if idx not in recent_candidates:
# Convert candidate pair to an immutable tuple
candidate_pair = tuple(trg_array[idx].tolist())
if candidate_pair[-1][0] == mel_tones[midx] and candidate_pair[-1][1] not in cseen:
available_candidates.append((idx, candidate_pair))
cseen.append(candidate_pair[-1][1])
# If all candidates have recently been used, backtrack.
if len(available_candidates) < 3:
if len(current_seq) >= start_len:
#tones_chord = sorted([mel_tones[midx], (mel_tones[midx]+7) % 12])
tones_chord = sorted([mel_tones[midx]])
new_tuple = [[mel_tones[midx], TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)]]
current_seq = np.concatenate((current_seq, new_tuple), axis=0)
#rev_val = random.choice([-1, -2])
#current_seq = current_seq[:rev_val]
#print(midx)
#midx = len(current_seq)
#print('Reverted', midx, len(current_seq))
continue
else:
print(len(available_candidates))
# Choose one available candidate at random.
chosen_idx, chosen_pair = available_candidates[np.random.choice(len(available_candidates))]
new_token = trg_array[chosen_idx][-1] # The second token of the candidate pair.
# Append the new token to the sequence.
current_seq = np.concatenate((current_seq, new_token[None, :]), axis=0)
recent_candidates.append(chosen_idx)
print('Gen seq len', len(current_seq))
return current_seq
###################################################################################
def minkowski_distance_vector_to_matrix(x: cp.ndarray, X: cp.ndarray, p: float = 3) -> cp.ndarray:
"""
Computes the Minkowski distance between a 1D CuPy array 'x' and each row of a 2D CuPy array 'X'.
Parameters:
x (cp.ndarray): A 1D array with shape (n_features,) representing a single vector.
X (cp.ndarray): A 2D array with shape (n_samples, n_features) where each row is a vector.
p (float): The order of the Minkowski distance.
For instance:
- p=1 yields the Manhattan distance,
- p=2 yields the Euclidean distance,
- p=3 yields the Minkowski distance and will use the cube-root implementation,
- p=∞ (or cp.inf) gives the Chebyshev distance.
Returns:
cp.ndarray: A 1D array of length n_samples containing the Minkowski distance between 'x'
and the corresponding row in 'X'.
"""
# Compute the element-wise absolute differences between x and every row in X.
# Broadcasting x over the rows of X results in an array of shape (n_samples, n_features).
diff = cp.abs(X - x)
if p == float('inf') or p == cp.inf:
# For the Chebyshev distance, use the maximum absolute difference along the feature axis.
distances = cp.max(diff, axis=1)
elif p == 3:
# Instead of using the generic power operation (sum(diff**3) ** (1/3)),
# we use cp.cbrt for cube-root calculation when p is exactly 3.
distances = cp.cbrt(cp.sum(diff ** 3, axis=1))
else:
# For general Minkowski distance with finite p,
# compute the p-th power of differences, sum them, then take the p-th root.
distances = cp.sum(diff ** p, axis=1) ** (1.0 / p)
return distances
###################################################################################
def pairwise_minkowski_distance(X: cp.ndarray, p: float = 2) -> cp.ndarray:
"""
Computes pairwise Minkowski distances for a 2D CuPy array.
Parameters:
X (cp.ndarray): A 2D array of shape (n_samples, n_features), where each row represents a vector.
p (float): The order of the Minkowski distance.
For example:
- p=1 is the Manhattan distance,
- p=2 is the Euclidean distance,
- p=∞ (e.g., float('inf') or cp.inf) is the Chebyshev distance.
Returns:
cp.ndarray: A 2D array of shape (n_samples, n_samples) containing the pairwise Minkowski distances.
"""
# Use broadcasting to compute the absolute difference between every pair of vectors.
# The result of X[:, None, :] - X[None, :, :] will have shape (n_samples, n_samples, n_features).
if p == float('inf') or p == cp.inf:
# For the Chebyshev distance, take the maximum absolute difference along the feature axis.
return cp.max(cp.abs(X[:, None, :] - X[None, :, :]), axis=-1)
else:
# Raise the absolute differences to the power p.
diff_powered = cp.abs(X[:, None, :] - X[None, :, :]) ** p
# Sum over the features for each pair (i, j) and then take the p-th root.
distances = cp.sum(diff_powered, axis=-1) ** (1.0 / p)
return distances
###################################################################################
def pairwise_cosine_similarity(X: cp.ndarray, eps: float = 1e-10) -> cp.ndarray:
"""
Computes the pairwise cosine similarity for a 2D CuPy array.
Parameters:
X (cp.ndarray): A 2D array of shape (n_samples, n_features) where each row represents a vector.
eps (float): A small constant added to the denominator to prevent division by zero.
Returns:
cp.ndarray: A 2D array of shape (n_samples, n_samples) containing the pairwise cosine similarities.
"""
# Compute the dot product between every pair of rows.
# This results in a matrix where element (i, j) is the dot product of X[i] and X[j].
dot_product = cp.dot(X, X.T)
# Compute the L2 norm (Euclidean norm) for each row vector.
norms = cp.linalg.norm(X, axis=1)
# Compute the outer product of the norms to form the denominator.
# The element (i, j) in this matrix is norms[i] * norms[j].
norm_matrix = cp.outer(norms, norms)
# Compute the cosine similarity matrix.
# Adding a small epsilon (eps) to the denominator prevents division by zero.
cosine_similarity = dot_product / (norm_matrix + eps)
return cosine_similarity
###################################################################################
print('Module is loaded!')
print('Enjoy! :)')
print('=' * 70)
###################################################################################
# This is the end of the TCUPY Python module
################################################################################### |