|
import argparse |
|
import glob |
|
import os.path |
|
|
|
import gradio as gr |
|
|
|
import pickle |
|
import tqdm |
|
import json |
|
|
|
import MIDI |
|
from midi_synthesizer import synthesis |
|
|
|
in_space = os.getenv("SYSTEM") == "spaces" |
|
|
|
|
|
def find_midi(): |
|
if disable_channels is not None: |
|
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels] |
|
else: |
|
disable_channels = [] |
|
max_token_seq = tokenizer.max_token_seq |
|
if prompt is None: |
|
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64) |
|
input_tensor[0, 0] = tokenizer.bos_id |
|
else: |
|
prompt = prompt[:, :max_token_seq] |
|
if prompt.shape[-1] < max_token_seq: |
|
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])), |
|
mode="constant", constant_values=tokenizer.pad_id) |
|
input_tensor = prompt |
|
input_tensor = input_tensor[None, :, :] |
|
cur_len = input_tensor.shape[1] |
|
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space) |
|
with bar: |
|
while cur_len < max_len: |
|
end = False |
|
hidden = model[0].run(None, {'x': input_tensor})[0][:, -1] |
|
next_token_seq = np.empty((1, 0), dtype=np.int64) |
|
event_name = "" |
|
for i in range(max_token_seq): |
|
mask = np.zeros(tokenizer.vocab_size, dtype=np.int64) |
|
if i == 0: |
|
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id] |
|
if disable_patch_change: |
|
mask_ids.remove(tokenizer.event_ids["patch_change"]) |
|
if disable_control_change: |
|
mask_ids.remove(tokenizer.event_ids["control_change"]) |
|
mask[mask_ids] = 1 |
|
else: |
|
param_name = tokenizer.events[event_name][i - 1] |
|
mask_ids = tokenizer.parameter_ids[param_name] |
|
if param_name == "channel": |
|
mask_ids = [i for i in mask_ids if i not in disable_channels] |
|
mask[mask_ids] = 1 |
|
logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:] |
|
scores = softmax(logits / temp, -1) * mask |
|
sample = sample_top_p_k(scores, top_p, top_k) |
|
if i == 0: |
|
next_token_seq = sample |
|
eid = sample.item() |
|
if eid == tokenizer.eos_id: |
|
end = True |
|
break |
|
event_name = tokenizer.id_events[eid] |
|
else: |
|
next_token_seq = np.concatenate([next_token_seq, sample], axis=1) |
|
if len(tokenizer.events[event_name]) == i: |
|
break |
|
if next_token_seq.shape[1] < max_token_seq: |
|
next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])), |
|
mode="constant", constant_values=tokenizer.pad_id) |
|
next_token_seq = next_token_seq[None, :, :] |
|
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1) |
|
cur_len += 1 |
|
bar.update(1) |
|
yield next_token_seq.reshape(-1) |
|
if end: |
|
break |
|
|
|
|
|
def create_msg(name, data): |
|
return {"name": name, "data": data} |
|
|
|
|
|
def run(search_prompt, mid=None): |
|
mid_seq = [] |
|
|
|
if mid == None: |
|
|
|
for m in meta_data: |
|
mid_seq.extend(m[1][17:]) |
|
mid_seq_ticks = m[1][16][1] |
|
break |
|
|
|
elif mid is not None: |
|
mid_seq = MIDI.midi2score(mid) |
|
|
|
init_msgs = [create_msg("visualizer_clear", None)] |
|
|
|
|
|
|
|
|
|
for i in range(len(mid_seq)-1): |
|
if mid_seq[i][0] == 'note': |
|
yield mid_seq, None, None, [create_msg("visualizer_append", mid_seq[i]), create_msg("progress", [i + 1, len(mid_seq)])] |
|
|
|
with open(f"output.mid", 'wb') as f: |
|
f.write(MIDI.score2midi(mid_seq)) |
|
audio = synthesis(MIDI.score2opus([mid_seq_ticks, [mid_seq]]), soundfont_path) |
|
yield mid_seq, "output.mid", (44100, audio), [create_msg("visualizer_end", None)] |
|
|
|
|
|
def cancel_run(mid_seq): |
|
if mid_seq is None: |
|
return None, None |
|
|
|
with open(f"output.mid", 'wb') as f: |
|
f.write(MIDI.score2midi(mid_seq)) |
|
audio = synthesis(MIDI.score2opus(mid_seq), soundfont_path) |
|
return "output.mid", (44100, audio), [create_msg("visualizer_end", None)] |
|
|
|
|
|
def load_javascript(dir="javascript"): |
|
scripts_list = glob.glob(f"{dir}/*.js") |
|
javascript = "" |
|
for path in scripts_list: |
|
with open(path, "r", encoding="utf8") as jsfile: |
|
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>" |
|
template_response_ori = gr.routes.templates.TemplateResponse |
|
|
|
def template_response(*args, **kwargs): |
|
res = template_response_ori(*args, **kwargs) |
|
res.body = res.body.replace( |
|
b'</head>', f'{javascript}</head>'.encode("utf8")) |
|
res.init_headers() |
|
return res |
|
|
|
gr.routes.templates.TemplateResponse = template_response |
|
|
|
|
|
class JSMsgReceiver(gr.HTML): |
|
def __init__(self, **kwargs): |
|
super().__init__(elem_id="msg_receiver", visible=False, **kwargs) |
|
|
|
def postprocess(self, y): |
|
if y: |
|
y = f"<p>{json.dumps(y)}</p>" |
|
return super().postprocess(y) |
|
|
|
def get_block_name(self) -> str: |
|
return "html" |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") |
|
parser.add_argument("--port", type=int, default=7860, help="gradio server port") |
|
parser.add_argument("--max-gen", type=int, default=1024, help="max") |
|
|
|
opt = parser.parse_args() |
|
|
|
soundfont_path = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
meta_data_path = "meta-data/LAMD_META_10000.pickle" |
|
|
|
models_info = {"generic pretrain model": ["skytnt/midi-model", ""], |
|
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"], |
|
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"]} |
|
|
|
|
|
print('Loading meta-data...') |
|
with open(meta_data_path, 'rb') as f: |
|
meta_data = pickle.load(f) |
|
print('Done!') |
|
|
|
|
|
load_javascript() |
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Search</h1>") |
|
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.MIDI-Search&style=flat)\n\n" |
|
"MIDI Search and Explore\n\n" |
|
"Demo for [MIDI Search](https://github.com/asigalov61)\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/MIDI-Search/blob/main/demo.ipynb)" |
|
" for faster running and longer generation" |
|
) |
|
|
|
js_msg = JSMsgReceiver() |
|
|
|
with gr.Tabs(): |
|
with gr.TabItem("instrument prompt") as tab1: |
|
|
|
search_prompt = gr.Textbox(label="search prompt") |
|
|
|
with gr.TabItem("midi prompt") as tab2: |
|
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary") |
|
|
|
with gr.Accordion("options", open=False): |
|
|
|
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True) |
|
|
|
search_btn = gr.Button("search", variant="primary") |
|
stop_btn = gr.Button("stop and output") |
|
output_midi_seq = gr.Textbox() |
|
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container") |
|
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") |
|
output_midi = gr.File(label="output midi", file_types=[".mid"]) |
|
run_event = search_btn.click(run, [search_prompt], |
|
[output_midi_seq, output_midi, output_audio, js_msg]) |
|
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False) |
|
app.queue(1).launch(server_port=opt.port, share=opt.share, inbrowser=True) |