asigalov61's picture
Update app.py
819a468
raw
history blame
8.39 kB
import argparse
import glob
import os.path
import gradio as gr
import pickle
import tqdm
import json
import MIDI
from midi_synthesizer import synthesis
in_space = os.getenv("SYSTEM") == "spaces"
def find_midi():
if disable_channels is not None:
disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
else:
disable_channels = []
max_token_seq = tokenizer.max_token_seq
if prompt is None:
input_tensor = np.full((1, max_token_seq), tokenizer.pad_id, dtype=np.int64)
input_tensor[0, 0] = tokenizer.bos_id # bos
else:
prompt = prompt[:, :max_token_seq]
if prompt.shape[-1] < max_token_seq:
prompt = np.pad(prompt, ((0, 0), (0, max_token_seq - prompt.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
input_tensor = prompt
input_tensor = input_tensor[None, :, :]
cur_len = input_tensor.shape[1]
bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
with bar:
while cur_len < max_len:
end = False
hidden = model[0].run(None, {'x': input_tensor})[0][:, -1]
next_token_seq = np.empty((1, 0), dtype=np.int64)
event_name = ""
for i in range(max_token_seq):
mask = np.zeros(tokenizer.vocab_size, dtype=np.int64)
if i == 0:
mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
if disable_patch_change:
mask_ids.remove(tokenizer.event_ids["patch_change"])
if disable_control_change:
mask_ids.remove(tokenizer.event_ids["control_change"])
mask[mask_ids] = 1
else:
param_name = tokenizer.events[event_name][i - 1]
mask_ids = tokenizer.parameter_ids[param_name]
if param_name == "channel":
mask_ids = [i for i in mask_ids if i not in disable_channels]
mask[mask_ids] = 1
logits = model[1].run(None, {'x': next_token_seq, "hidden": hidden})[0][:, -1:]
scores = softmax(logits / temp, -1) * mask
sample = sample_top_p_k(scores, top_p, top_k)
if i == 0:
next_token_seq = sample
eid = sample.item()
if eid == tokenizer.eos_id:
end = True
break
event_name = tokenizer.id_events[eid]
else:
next_token_seq = np.concatenate([next_token_seq, sample], axis=1)
if len(tokenizer.events[event_name]) == i:
break
if next_token_seq.shape[1] < max_token_seq:
next_token_seq = np.pad(next_token_seq, ((0, 0), (0, max_token_seq - next_token_seq.shape[-1])),
mode="constant", constant_values=tokenizer.pad_id)
next_token_seq = next_token_seq[None, :, :]
input_tensor = np.concatenate([input_tensor, next_token_seq], axis=1)
cur_len += 1
bar.update(1)
yield next_token_seq.reshape(-1)
if end:
break
def create_msg(name, data):
return {"name": name, "data": data}
def run(search_prompt, mid=None):
mid_seq = []
if mid == None:
for m in meta_data:
mid_seq.extend(m[1][17:])
mid_seq_ticks = m[1][16][1]
break
elif mid is not None:
mid_seq = MIDI.midi2score(mid)
init_msgs = [create_msg("visualizer_clear", None)]
# for events in mid_seq:
# init_msgs.append(create_msg("visualizer_append", events))
# yield mid_seq, None, None, init_msgs
for i in range(len(mid_seq)-1):
if mid_seq[i][0] == 'note':
yield mid_seq, None, None, [create_msg("visualizer_append", mid_seq[i]), create_msg("progress", [i + 1, len(mid_seq)])]
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid_seq))
audio = synthesis(MIDI.score2opus([mid_seq_ticks, [mid_seq]]), soundfont_path)
yield mid_seq, "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
def cancel_run(mid_seq):
if mid_seq is None:
return None, None
with open(f"output.mid", 'wb') as f:
f.write(MIDI.score2midi(mid_seq))
audio = synthesis(MIDI.score2opus(mid_seq), soundfont_path)
return "output.mid", (44100, audio), [create_msg("visualizer_end", None)]
def load_javascript(dir="javascript"):
scripts_list = glob.glob(f"{dir}/*.js")
javascript = ""
for path in scripts_list:
with open(path, "r", encoding="utf8") as jsfile:
javascript += f"\n<!-- {path} --><script>{jsfile.read()}</script>"
template_response_ori = gr.routes.templates.TemplateResponse
def template_response(*args, **kwargs):
res = template_response_ori(*args, **kwargs)
res.body = res.body.replace(
b'</head>', f'{javascript}</head>'.encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
class JSMsgReceiver(gr.HTML):
def __init__(self, **kwargs):
super().__init__(elem_id="msg_receiver", visible=False, **kwargs)
def postprocess(self, y):
if y:
y = f"<p>{json.dumps(y)}</p>"
return super().postprocess(y)
def get_block_name(self) -> str:
return "html"
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
parser.add_argument("--max-gen", type=int, default=1024, help="max")
opt = parser.parse_args()
soundfont_path = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
meta_data_path = "meta-data/LAMD_META_10000.pickle"
models_info = {"generic pretrain model": ["skytnt/midi-model", ""],
"j-pop finetune model": ["skytnt/midi-model-ft", "jpop/"],
"touhou finetune model": ["skytnt/midi-model-ft", "touhou/"]}
print('Loading meta-data...')
with open(meta_data_path, 'rb') as f:
meta_data = pickle.load(f)
print('Done!')
load_javascript()
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Search</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.MIDI-Search&style=flat)\n\n"
"MIDI Search and Explore\n\n"
"Demo for [MIDI Search](https://github.com/asigalov61)\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/MIDI-Search/blob/main/demo.ipynb)"
" for faster running and longer generation"
)
js_msg = JSMsgReceiver()
with gr.Tabs():
with gr.TabItem("instrument prompt") as tab1:
search_prompt = gr.Textbox(label="search prompt")
with gr.TabItem("midi prompt") as tab2:
input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
with gr.Accordion("options", open=False):
input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
search_btn = gr.Button("search", variant="primary")
stop_btn = gr.Button("stop and output")
output_midi_seq = gr.Textbox()
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container")
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = search_btn.click(run, [search_prompt],
[output_midi_seq, output_midi, output_audio, js_msg])
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio, js_msg], cancels=run_event, queue=False)
app.queue(1).launch(server_port=opt.port, share=opt.share, inbrowser=True)