asigalov61's picture
Update app.py
980027a verified
raw
history blame
7.95 kB
import argparse
import glob
import os.path
import hashlib
import time
import datetime
from pytz import timezone
import gradio as gr
import pickle
import tqdm
import json
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
import copy
from collections import Counter
import random
import statistics
import matplotlib.pyplot as plt
#==========================================================================================================
in_space = os.getenv("SYSTEM") == "spaces"
#==========================================================================================================
def render_midi(input_midi, render_options):
print('*' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = time.time()
print('=' * 70)
print('Loading MIDI...')
fn = os.path.basename(input_midi)
fn1 = fn.split('.')[0]
fdata = open(input_midi, 'rb').read()
input_midi_md5hash = hashlib.md5(fdata).hexdigest()
print('=' * 70)
print('Input MIDI file name:', fn)
print('Input MIDI md5 hash', input_midi_md5hash)
print('Render options:', render_options)
print('=' * 70)
print('Processing MIDI...Please wait...')
#=======================================================
# START PROCESSING
raw_score = TMIDIX.midi2single_track_ms_score(fdata, recalculate_channels=False)
escore = TMIDIX.advanced_score_processor(raw_score, return_score_analysis=False, return_enhanced_score_notes=True)[0]
first_note_index = raw_score[1].index(escore[0][:6])
for e in escore:
e[1] = int(e[1] / 16)
e[2] = int(e[2] / 16)
# Sorting by patch, pitch, then by start-time
escore.sort(key=lambda x: x[6])
escore.sort(key=lambda x: x[4], reverse=True)
escore.sort(key=lambda x: x[1])
cscore = TMIDIX.chordify_score([1000, escore])
meta_data = raw_score[1][:first_note_index] + [escore[0]] + [escore[-1]] + [raw_score[1][-1]]
print('Done!')
print('=' * 70)
print('Input MIDI metadata:', meta_data)
print('=' * 70)
print('Processing...Please wait...')
if not render_options:
output_score = escore
elif "Render as-is" in render_options:
output_score = escore
elif "Extract melody" in render_options:
output_score = [c[0] for c in cscore if c[0][3] != 9]
for e in output_score:
e[3] = 0
e[6] = 40
print('Done processing!')
print('=' * 70)
print('Recalculating timings...')
print('=' * 70)
for e in output_score:
e[1] = e[1] * 16
e[2] = e[2] * 16
print('Done recalculating timings!')
print('=' * 70)
print('Sample output events', output_score[:5])
print('=' * 70)
print('Final processing...')
new_fn = fn1+'.mid'
patches = [-1] * 16
patches[9] = 9
for e in output_score:
if e[3] != 9:
if patches[e[3]] == -1:
patches[e[3]] = e[6]
else:
if patches[e[3]] != e[6]:
if -1 in patches:
patches[patches.index(-1)] = e[6]
else:
patches[-1] = e[6]
patches = [p if p != -1 else 0 for p in patches]
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
output_signature = 'Advanced MIDI Renderer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfonts[0],
sample_rate=16000, # 44100
volume_scale=10,
output_for_gradio=True
)
new_md5_hash = hashlib.md5(open(new_fn,'rb').read()).hexdigest()
print('Done!')
print('=' * 70)
#========================================================
output_midi_md5 = str(new_md5_hash)
output_midi_title = str(fn1)
output_midi_summary = str(meta_data)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(escore, plot_title=output_midi)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI hash:', output_midi_md5)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (time.time() - start_time), 'sec')
print('*' * 70)
#========================================================
yield output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
#==========================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
opt = parser.parse_args()
soundfonts = ["SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2", "Nice-Strings-PlusOrchestra-v1.6.sf2", "KBH-Real-Choir-V2.5.sf2"]
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Advanced MIDI Renderer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Transform and render any MIDI</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Advanced-MIDI-Renderer&style=flat)\n\n"
"Los Angeles MIDI Dataset Demo\n\n"
"Please see [Los Angeles MIDI Dataset](https://github.com/asigalov61/Los-Angeles-MIDI-Dataset) for more information and features\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb)"
" for all features\n\n"
)
gr.Markdown("## Upload your MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="filepath")
gr.Markdown("## Select desired render options")
render_options = gr.CheckboxGroup(["Render as-is", "Extract melody", "Transform"], value="Render as-is")
submit = gr.Button()
gr.Markdown("## Render results")
output_midi_md5 = gr.Textbox(label="Output MIDI md5 hash")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = submit.click(render_midi, [input_midi, render_options],
[output_midi_md5, output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue(1).launch(server_port=opt.port, share=opt.share, inbrowser=True)