Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,864 Bytes
b6bb234 2a68ddd 3fea55e b6bb234 2a68ddd b6bb234 037c7a6 2a68ddd 498b808 2a68ddd 3908eea 2a68ddd b6bb234 a3e0baa 037c7a6 a914076 7b0fbfe 606e959 6c71f04 606e959 6c71f04 11f0dcb b6bb234 a3e0baa b6bb234 a3e0baa b6bb234 498b808 6c71f04 a3e0baa 037c7a6 ff7362d 037c7a6 399d36d 037c7a6 ff7362d 399d36d 037c7a6 de73f36 3fea55e 606e959 a3e0baa 3fea55e a3e0baa 11f0dcb de73f36 95675e7 a3e0baa 606e959 de73f36 a3e0baa de73f36 a3e0baa f16b04e a3e0baa ac1c10f a3e0baa 2ff429b b6bb234 0ccc4f3 6aeacba 86b7652 6aeacba 606e959 de73f36 7b0fbfe 6c71f04 606e959 2ff429b 2a68ddd a3e0baa 6c71f04 606e959 6c71f04 2a68ddd b6bb234 2a68ddd a3e0baa fb9c37a a3e0baa aa762cf a3e0baa 2a68ddd aa762cf 86b7652 aa762cf 2a68ddd 25f28a8 2a68ddd 25f28a8 2a68ddd a914076 6aeacba 037c7a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os.path
import time
import datetime
from pytz import timezone
import torch
import torch.nn.functional as F
import gradio as gr
import spaces
from x_transformer import *
import tqdm
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateMIDI(num_tok, idrums, iinstr):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = time.time()
print('-' * 70)
print('Req num tok:', num_tok)
print('Req instr:', iinstr)
print('Drums:', idrums)
print('-' * 70)
if idrums:
drums = 3074
else:
drums = 3073
instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums',
"Choir", "Organ"]
first_note_instrument_number = instruments_list.index(iinstr)
start_tokens = [3087, drums, 3075 + first_note_instrument_number]
print('Selected Improv sequence:')
print(start_tokens)
print('-' * 70)
output_signature = 'Allegro Music Transformer'
output_file_name = 'Allegro-Music-Transformer-Music-Composition'
track_name = 'Project Los Angeles'
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
number_of_ticks_per_quarter = 500
text_encoding = 'ISO-8859-1'
output_header = [number_of_ticks_per_quarter,
[['track_name', 0, bytes(output_signature, text_encoding)]]]
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
['patch_change', 0, 1, list_of_MIDI_patches[1]],
['patch_change', 0, 2, list_of_MIDI_patches[2]],
['patch_change', 0, 3, list_of_MIDI_patches[3]],
['patch_change', 0, 4, list_of_MIDI_patches[4]],
['patch_change', 0, 5, list_of_MIDI_patches[5]],
['patch_change', 0, 6, list_of_MIDI_patches[6]],
['patch_change', 0, 7, list_of_MIDI_patches[7]],
['patch_change', 0, 8, list_of_MIDI_patches[8]],
['patch_change', 0, 9, list_of_MIDI_patches[9]],
['patch_change', 0, 10, list_of_MIDI_patches[10]],
['patch_change', 0, 11, list_of_MIDI_patches[11]],
['patch_change', 0, 12, list_of_MIDI_patches[12]],
['patch_change', 0, 13, list_of_MIDI_patches[13]],
['patch_change', 0, 14, list_of_MIDI_patches[14]],
['patch_change', 0, 15, list_of_MIDI_patches[15]],
['track_name', 0, bytes(track_name, text_encoding)]]
output = output_header + [patch_list]
print('Loading model...')
SEQ_LEN = 2048
# instantiate the model
model = TransformerWrapper(
num_tokens=3088,
max_seq_len=SEQ_LEN,
attn_layers=Decoder(dim=1024, depth=32, heads=8, attn_flash=True)
)
model = AutoregressiveWrapper(model)
model = torch.nn.DataParallel(model)
model.cuda()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.pth',
map_location='cuda'))
print('=' * 70)
model.eval()
print('Done!')
print('=' * 70)
inp = torch.LongTensor([start_tokens]).cuda()
with torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16):
with torch.inference_mode():
out = model.module.generate(inp,
max(1, min(1024, num_tok)),
temperature=0.9,
return_prime=False,
verbose=False)
out0 = out[0].tolist()
ctime = 0
dur = 0
vel = 90
pitch = 0
channel = 0
for ss1 in out0:
if 0 < ss1 < 256:
ctime += ss1 * 8
if 256 <= ss1 < 1280:
dur = ((ss1 - 256) // 8) * 32
vel = (((ss1 - 256) % 8) + 1) * 15
if 1280 <= ss1 < 2816:
channel = (ss1 - 1280) // 128
pitch = (ss1 - 1280) % 128
if channel != 9:
pat = list_of_MIDI_patches[channel]
else:
pat = 128
event = ['note', ctime, dur, channel, pitch, vel, pat]
output[-1].append(event)
midi_data = TMIDIX.score2midi(output, text_encoding)
with open(f"Allegro-Music-Transformer-Composition.mid", 'wb') as f:
f.write(midi_data)
output_plot = TMIDIX.plot_ms_SONG(output[2], plot_title='Allegro-Music-Transformer-Composition', return_plt=True)
audio = midi_to_colab_audio('Allegro-Music-Transformer-Composition.mid',
soundfont_path="SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2",
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('First generated MIDI events', output[2][:3])
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (time.time() - start_time), 'sec')
return output_plot, "Allegro-Music-Transformer-Composition.mid", (16000, audio)
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n"
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n"
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n"
"Special thanks go out to [SkyTNT](https://github.com/SkyTNT/midi-model) for fantastic FluidSynth Synthesizer and MIDI Visualizer code\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)"
" for faster execution and endless generation"
)
input_instrument = gr.Radio(
["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"],
value="Piano", label="Lead Instrument Controls", info="Desired lead instrument")
input_drums = gr.Checkbox(label="Add Drums", value=False, info="Add drums to the composition")
input_num_tokens = gr.Slider(16, 1024, value=512, label="Number of Tokens", info="Number of tokens to generate")
run_btn = gr.Button("generate", variant="primary")
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_plot = gr.Plot(label='output plot')
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = run_btn.click(GenerateMIDI, [input_num_tokens, input_drums, input_instrument],
[output_plot, output_midi, output_audio])
app.queue().launch() |