File size: 8,085 Bytes
b6bb234
 
 
 
 
 
 
 
 
498b808
b6bb234
 
 
 
 
 
 
 
 
 
 
 
c58641e
b6bb234
799558e
c58641e
799558e
 
 
11f0dcb
b6bb234
 
 
 
 
 
 
 
 
 
498b808
 
 
b6bb234
11f0dcb
 
c58641e
b6bb234
11f0dcb
 
 
c58641e
11f0dcb
 
af57922
11f0dcb
 
 
 
95675e7
 
b6bb234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f88bb6
ffd3c58
b903d50
 
 
dbe3ea6
 
 
6f88bb6
aad9254
b6bb234
 
 
 
 
 
 
 
 
 
 
498b808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbf9a0d
498b808
 
 
 
b6bb234
 
 
 
 
 
 
 
 
 
 
 
c58641e
347667d
 
e84a56c
b6bb234
 
 
65c1eaa
b6bb234
 
c58641e
823b615
b6bb234
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import argparse
import glob
import os.path

import torch
import torch.nn.functional as F

import gradio as gr

from x_transformer import *
import tqdm

from midi_synthesizer import synthesis
import TMIDIX

import matplotlib.pyplot as plt

in_space = os.getenv("SYSTEM") == "spaces"
      
#=================================================================================================

@torch.no_grad()
def GenerateMIDI(num_tok, idrums, iinstr, progress=gr.Progress()):

    print('=' * 70)
    print('Req num tok', num_tok)
    print('Req instr', iinstr)
    print('Drums', idrums)
    print('=' * 70)

    if idrums:
        drums = 3074
    else:
        drums = 3073

    instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums', "Choir", "Organ"]
    first_note_instrument_number = instruments_list.index(iinstr)

    start_tokens = [3087, drums, 3075+first_note_instrument_number]

    print('Selected Improv sequence:')
    print(start_tokens)
    print('=' * 70)
    
    outy = start_tokens

    for i in progress.tqdm(range(num_tok)):
    
        inp = torch.LongTensor([outy]).cpu()
        
        out = model.module.generate(inp,
                              1,
                              temperature=0.9,
                              return_prime=False,
                              verbose=False)
        
        out0 = out[0].tolist()

        outy.extend(out0)

    melody_chords_f = outy
    
    print('Sample INTs', melody_chords_f[:12])
    print('=' * 70)
    
    if len(melody_chords_f) != 0:
    
        song = melody_chords_f
        song_f = []
        time = 0
        dur = 0
        vel = 0
        pitch = 0
        channel = 0
    
        for ss in song:

            ss1 = int(ss)
    
            if ss1 > 0 and ss1 < 256:
            
              time += ss1 * 8
            
            if ss1 >= 256 and ss1 < 1280:
            
              dur = ((ss1-256) // 8) * 32
              vel = (((ss1-256) % 8)+1) * 15
            
            if ss1 >= 1280 and ss1 < 2816:
              channel = (ss1-1280) // 128
              pitch = (ss1-1280) % 128
            
              song_f.append(['note', int(time), int(dur), int(channel), int(pitch), int(vel) ])
        
    output_signature = 'Allegro Music Transformer'
    output_file_name = 'Allegro-Music-Transformer-Music-Composition'
    track_name='Project Los Angeles'
    list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
    number_of_ticks_per_quarter=500
    text_encoding='ISO-8859-1'
    
    output_header = [number_of_ticks_per_quarter, 
            [['track_name', 0, bytes(output_signature, text_encoding)]]]                                                    

    patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], 
                    ['patch_change', 0, 1, list_of_MIDI_patches[1]],
                    ['patch_change', 0, 2, list_of_MIDI_patches[2]],
                    ['patch_change', 0, 3, list_of_MIDI_patches[3]],
                    ['patch_change', 0, 4, list_of_MIDI_patches[4]],
                    ['patch_change', 0, 5, list_of_MIDI_patches[5]],
                    ['patch_change', 0, 6, list_of_MIDI_patches[6]],
                    ['patch_change', 0, 7, list_of_MIDI_patches[7]],
                    ['patch_change', 0, 8, list_of_MIDI_patches[8]],
                    ['patch_change', 0, 9, list_of_MIDI_patches[9]],
                    ['patch_change', 0, 10, list_of_MIDI_patches[10]],
                    ['patch_change', 0, 11, list_of_MIDI_patches[11]],
                    ['patch_change', 0, 12, list_of_MIDI_patches[12]],
                    ['patch_change', 0, 13, list_of_MIDI_patches[13]],
                    ['patch_change', 0, 14, list_of_MIDI_patches[14]],
                    ['patch_change', 0, 15, list_of_MIDI_patches[15]],
                    ['track_name', 0, bytes(track_name, text_encoding)]]

    output = output_header + [patch_list + song_f]

    midi_data = TMIDIX.score2midi(output, text_encoding)
    
    with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f:
        f.write(midi_data)

    output1 = []
    itrack = 1
    
    opus =  TMIDIX.score2opus(output)
          
    while itrack < len(opus):
        for event in opus[itrack]:
            if (event[0] == 'note_on') or (event[0] == 'note_off'): 
                output1.append(event)
        itrack += 1
        
    audio = synthesis([500, output1], 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2')
    
    x = []
    y =[]
    c = []
    
    colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver']
    
    for s in song_f:
      x.append(s[1] / 1000)
      y.append(s[4])
      c.append(colors[s[3]])

    plt.close()
    plt.figure(figsize=(14,5))
    ax=plt.axes(title='Allegro Music Transformer Composition')
    ax.set_facecolor('black')
    
    plt.scatter(x,y, c=c)
    plt.xlabel("Time")
    plt.ylabel("Pitch")
    
    yield [500, output1], plt, "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio)
        
#=================================================================================================

if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
    parser.add_argument("--port", type=int, default=7860, help="gradio server port")
    opt = parser.parse_args()

    print('Loading model...')

    SEQ_LEN = 2048
    
    # instantiate the model
    
    model = TransformerWrapper(
        num_tokens = 3088,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 32, heads = 8)
    )
    
    model = AutoregressiveWrapper(model)
    
    model = torch.nn.DataParallel(model)
    
    model.cpu()
    print('=' * 70)
    
    print('Loading model checkpoint...')
    
    model.load_state_dict(torch.load('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.pth', map_location='cpu'))
    print('=' * 70)
    
    model.eval()    
    
    print('Done!')
    
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>")
        gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n"
                    "Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n"
                    "Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n"
                    "[Open In Colab]"
                    "(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)"
                    " for faster execution and endless generation"
                        )
        
        input_drums = gr.Checkbox(label="Drums Controls", value = False, info="Drums present or not")
        input_instrument = gr.Radio(["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"], value="Piano", label="Lead Instrument Controls", info="Desired lead instrument")       
        input_num_tokens = gr.Slider(16, 512, value=256, label="Number of Tokens", info="Number of tokens to generate")
        run_btn = gr.Button("generate", variant="primary")

        output_midi_seq = gr.Variable()
        output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
        output_plot = gr.Plot(label="output plot")
        output_midi = gr.File(label="output midi", file_types=[".mid"])
        run_event = run_btn.click(GenerateMIDI, [input_num_tokens, input_drums, input_instrument], [output_midi_seq, output_plot, output_midi, output_audio])

        app.queue(concurrency_count=1).launch(server_port=opt.port, share=opt.share, inbrowser=True)