asigalov61's picture
Update app.py
e2f25e4
raw
history blame
7.08 kB
import argparse
import glob
import os.path
import torch
import torch.nn.functional as F
import gradio as gr
import numpy as np
import onnxruntime as rt
import tqdm
import json
from midi_synthesizer import synthesis
import TMIDIX
in_space = os.getenv("SYSTEM") == "spaces"
#=================================================================================================
def generate(
#=================================================================================================
def create_msg(name, data):
return {"name": name, "data": data}
def GenerateMIDI():
start_tokens = [3087, 3073+1, 3075+1]
seq_len = 512
max_seq_len = 2048,
temperature = 0.9,
verbose=False,
return_prime=False,
progress=gr.Progress()
out = torch.LongTensor([start_tokens])
st = len(start_tokens)
if verbose:
print("Generating sequence of max length:", seq_len)
progress(0, desc="Starting...")
for i in progress.tqdm(range(seq_len)):
try:
x = out[:, -max_seq_len:]
torch_in = x.tolist()[0]
logits = torch.FloatTensor(session.run(None, {'input': [torch_in]})[0])[:, -1]
probs = F.softmax(logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
except:
break
if return_prime:
return out[:, :]
else:
return out[:, st:]
melody_chords_f = melody_chords_f.tolist()[0]
print('=' * 70)
print('Sample INTs', melody_chords_f[:12])
print('=' * 70)
if len(melody_chords_f) != 0:
song = melody_chords_f
song_f = []
time = 0
dur = 0
vel = 0
pitch = 0
channel = 0
for ss in song:
if ss > 0 and ss < 256:
time += ss * 8
if ss >= 256 and ss < 1280:
dur = ((ss-256) // 8) * 32
vel = (((ss-256) % 8)+1) * 15
if ss >= 1280 and ss < 2816:
channel = (ss-1280) // 128
pitch = (ss-1280) % 128
song_f.append(['note', time, dur, channel, pitch, vel ])
output_signature = 'Allegro Music Transformer'
output_file_name = 'Allegro-Music-Transformer-Music-Composition'
track_name='Project Los Angeles'
list_of_MIDI_patches=[0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0]
number_of_ticks_per_quarter=500
text_encoding='ISO-8859-1'
output_header = [number_of_ticks_per_quarter,
[['track_name', 0, bytes(output_signature, text_encoding)]]]
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]],
['patch_change', 0, 1, list_of_MIDI_patches[1]],
['patch_change', 0, 2, list_of_MIDI_patches[2]],
['patch_change', 0, 3, list_of_MIDI_patches[3]],
['patch_change', 0, 4, list_of_MIDI_patches[4]],
['patch_change', 0, 5, list_of_MIDI_patches[5]],
['patch_change', 0, 6, list_of_MIDI_patches[6]],
['patch_change', 0, 7, list_of_MIDI_patches[7]],
['patch_change', 0, 8, list_of_MIDI_patches[8]],
['patch_change', 0, 9, list_of_MIDI_patches[9]],
['patch_change', 0, 10, list_of_MIDI_patches[10]],
['patch_change', 0, 11, list_of_MIDI_patches[11]],
['patch_change', 0, 12, list_of_MIDI_patches[12]],
['patch_change', 0, 13, list_of_MIDI_patches[13]],
['patch_change', 0, 14, list_of_MIDI_patches[14]],
['patch_change', 0, 15, list_of_MIDI_patches[15]],
['track_name', 0, bytes(track_name, text_encoding)]]
output = output_header + [patch_list + song_f]
midi_data = TMIDIX.score2midi(output, text_encoding)
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f:
f.write(midi_data)
audio = synthesis(TMIDIX.score2opus(output), 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2')
yield output, "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio)
#=================================================================================================
def cancel_run(output_midi_seq):
if output_midi_seq is None:
return None, None
with open(f"Allegro-Music-Transformer-Music-Composition.mid", 'wb') as f:
f.write(TMIDIX.score2midi(output_midi_seq))
audio = synthesis(TMIDIX.score2opus(output_midi_seq), 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2')
return "Allegro-Music-Transformer-Music-Composition.mid", (44100, audio)
#=================================================================================================
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
parser.add_argument("--port", type=int, default=7860, help="gradio server port")
opt = parser.parse_args()
print('Loading model...')
session = rt.InferenceSession('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.onnx', providers=['CUDAExecutionProvider'])
print('Done!')
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Allegro Music Transformer</h1>")
gr.Markdown("![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n"
"Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n"
"Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)"
" for faster execution and endless generation"
)
run_btn = gr.Button("generate", variant="primary")
stop_btn = gr.Button("stop and output")
output_midi_seq = gr.Variable()
output_midi_visualizer = gr.HTML(elem_id="midi_visualizer_container")
output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio")
output_midi = gr.File(label="output midi", file_types=[".mid"])
run_event = run_btn.click(GenerateMIDI, [], [output_midi_seq, output_midi, output_audio])
stop_btn.click(cancel_run, output_midi_seq, [output_midi, output_audio], cancels=run_event, queue=False)
app.queue(2).launch(server_port=opt.port, share=opt.share, inbrowser=True)