import os.path import time import datetime from pytz import timezone import torch import gradio as gr import spaces from x_transformer import * import tqdm import TMIDIX from midi_to_colab_audio import midi_to_colab_audio import matplotlib.pyplot as plt # ================================================================================================= @spaces.GPU def GenerateMIDI(num_tok, idrums, iinstr, input_align): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = time.time() print('-' * 70) print('Req num tok:', num_tok) print('Req instr:', iinstr) print('Drums:', idrums) print('Align:', input_align) print('-' * 70) if idrums: drums = 3074 else: drums = 3073 instruments_list = ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", 'Drums', "Choir", "Organ"] first_note_instrument_number = instruments_list.index(iinstr) start_tokens = [3087, drums, 3075 + first_note_instrument_number] print('Selected Improv sequence:') print(start_tokens) print('-' * 70) output = [] print('Loading model...') SEQ_LEN = 2048 # instantiate the model model = TransformerWrapper( num_tokens=3088, max_seq_len=SEQ_LEN, attn_layers=Decoder(dim=1024, depth=32, heads=8, attn_flash=True) ) model = AutoregressiveWrapper(model) model = torch.nn.DataParallel(model) model.cuda() print('=' * 70) print('Loading model checkpoint...') model.load_state_dict( torch.load('Allegro_Music_Transformer_Small_Trained_Model_56000_steps_0.9399_loss_0.7374_acc.pth', map_location='cuda')) print('=' * 70) model.eval() print('Done!') print('=' * 70) print('Generating...') inp = torch.LongTensor([start_tokens]).cuda() with torch.amp.autocast(device_type='cuda', dtype=torch.bfloat16): with torch.inference_mode(): out = model.module.generate(inp, max(1, min(1024, num_tok)), temperature=0.9, return_prime=False, verbose=False) out0 = out[0].tolist() patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 53, 19, 0, 0, 0, 0] ctime = 0 dur = 1 vel = 90 pitch = 60 channel = 0 for ss1 in out0: if 0 < ss1 < 256: ctime += ss1 * 8 if 256 <= ss1 < 1280: dur = ((ss1 - 256) // 8) * 32 vel = (((ss1 - 256) % 8) + 1) * 15 if 1280 <= ss1 < 2816: channel = (ss1 - 1280) // 128 pitch = (ss1 - 1280) % 128 if channel != 9: pat = patches[channel] else: pat = 128 event = ['note', ctime, dur, channel, pitch, vel, pat] output.append(event) if input_align == "Start Times": output = TMIDIX.align_escore_notes_to_bars(output) elif input_align == "Start Times and Durations": output = TMIDIX.align_escore_notes_to_bars(output, trim_durations=True) elif input_align == "Start Times and Split Durations": output = TMIDIX.align_escore_notes_to_bars(output, split_durations=True) detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output, output_signature = 'Allegro Music Transformer', output_file_name = 'Allegro-Music-Transformer-Composition', track_name='Project Los Angeles', list_of_MIDI_patches=patches ) output_plot = TMIDIX.plot_ms_SONG(output, plot_title='Allegro-Music-Transformer-Composition', return_plt=True) audio = midi_to_colab_audio('Allegro-Music-Transformer-Composition.mid', soundfont_path="SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2", sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('First generated MIDI events', output[2][:3]) print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (time.time() - start_time), 'sec') return output_plot, "Allegro-Music-Transformer-Composition.mid", (16000, audio) # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) app = gr.Blocks() with app: gr.Markdown("

Allegro Music Transformer

") gr.Markdown( "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Allegro-Music-Transformer&style=flat)\n\n" "Full-attention multi-instrumental music transformer featuring asymmetrical encoding with octo-velocity, and chords counters tokens, optimized for speed and performance\n\n" "Check out [Allegro Music Transformer](https://github.com/asigalov61/Allegro-Music-Transformer) on GitHub!\n\n" "Special thanks go out to [SkyTNT](https://github.com/SkyTNT/midi-model) for fantastic FluidSynth Synthesizer and MIDI Visualizer code\n\n" "[Open In Colab]" "(https://colab.research.google.com/github/asigalov61/Allegro-Music-Transformer/blob/main/Allegro_Music_Transformer_Composer.ipynb)" " for faster execution and endless generation" ) input_instrument = gr.Radio( ["Piano", "Guitar", "Bass", "Violin", "Cello", "Harp", "Trumpet", "Sax", "Flute", "Choir", "Organ"], value="Piano", label="Lead Instrument Controls", info="Desired lead instrument") input_drums = gr.Checkbox(label="Add Drums", value=False, info="Add drums to the composition") input_align = gr.Radio(["Do not align", "Start Times", "Start Times and Durations", "Start Times and Split Durations"], label="Align output to bars", value="Do not align") input_num_tokens = gr.Slider(16, 1024, value=512, label="Number of Tokens", info="Number of tokens to generate") run_btn = gr.Button("generate", variant="primary") output_audio = gr.Audio(label="output audio", format="mp3", elem_id="midi_audio") output_plot = gr.Plot(label='output plot') output_midi = gr.File(label="output midi", file_types=[".mid"]) run_event = run_btn.click(GenerateMIDI, [input_num_tokens, input_drums, input_instrument, input_align], [output_plot, output_midi, output_audio]) app.queue().launch()