File size: 10,438 Bytes
482801d
c180660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfcfdc0
c180660
 
 
 
bfcfdc0
 
 
 
 
 
 
 
 
 
 
c180660
 
482801d
 
38a9fd9
c180660
 
 
 
 
 
f160b6e
c180660
 
482801d
c180660
 
 
 
 
 
 
f160b6e
c180660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2482f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef8d779
 
b2482f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c180660
 
b2482f9
 
 
c180660
 
 
7c0e727
 
c180660
 
7c0e727
c180660
 
 
 
7c0e727
 
 
 
 
 
 
c180660
 
 
 
7c0e727
 
 
 
 
 
c180660
 
 
7c0e727
 
c180660
 
7c0e727
c180660
 
7c0e727
c180660
7c0e727
c180660
 
 
 
 
 
7c0e727
c180660
 
 
 
 
 
 
 
 
 
 
 
7c0e727
 
 
 
 
 
 
 
 
 
 
c180660
7c0e727
c180660
7c0e727
c180660
7c0e727
 
 
 
 
 
c180660
7c0e727
c180660
 
7c0e727
c180660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f160b6e
c180660
482801d
d825ef1
c180660
482801d
c180660
bfcfdc0
7208f86
bfcfdc0
 
 
c180660
 
 
 
 
 
 
 
 
 
bfcfdc0
c180660
0e91e80
 
 
 
 
 
 
 
 
 
b3b8a5d
0e91e80
c180660
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# https://huggingface.co/spaces/asigalov61/Bridge-Music-Transformer

import os
import time as reqtime
import datetime
from pytz import timezone

import torch

import spaces
import gradio as gr

from x_transformer_1_23_2 import *
import random
import tqdm

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt

in_space = os.getenv("SYSTEM") == "spaces"
         
# =================================================================================================
                       
@spaces.GPU
def GenerateBridge(input_midi, input_start_note):
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()


    print('=' * 70)

    fn = os.path.basename(input_midi.name)
    fn1 = fn.split('.')[0]

    print('-' * 70)
    print('Input file name:', fn)
    print('Start note', input_start_note)
    print('-' * 70)

    print('Loading model...')

    SEQ_LEN = 3074
    PAD_IDX = 653
    DEVICE = 'cpu' # 'cuda'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 32, heads = 16, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)

    model.to(DEVICE)
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Bridge_Music_Transformer_Trained_Model_30023_steps_0.482_loss_0.8523_acc.pth',
                   map_location=DEVICE))
    print('=' * 70)

    model.eval()

    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.bfloat16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)

    print('Loading MIDI...')
    
    #===============================================================================
    # Raw single-track ms score
    
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
    
    #===============================================================================
    # Enhanced score notes
    
    escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    #===============================================================================
    # Augmented enhanced score notes
    
    escore_notes = TMIDIX.recalculate_score_timings(TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32))
    
    #=======================================================
    # FINAL PROCESSING
    
    melody_chords = []
    
    #=======================================================
    # MAIN PROCESSING CYCLE
    #=======================================================
    
    pe = escore_notes[0]
    
    for e in escore_notes:
    
        #=======================================================
        # Timings...
    
        delta_time = max(0, min(127, e[1]-pe[1]))
    
        # Durations and channels
    
        dur = max(0, min(127, e[2]))
    
        cha = max(0, min(15, e[3]))
    
        # Patches
        pat = max(0, min(128, e[6]))
    
        # Pitches
        if cha != 9:
            ptc = max(1, min(127, e[4]))
        else:
            ptc = max(1, min(127, e[4]))+128
    
        # Velocities
        # Calculating octo-velocity
        velocity = max(8, min(127, e[5]))
        vel = round(velocity / 15)-1
    
        #=======================================================
        # FINAL NOTE SEQ
    
        # Writing final note synchronously
    
        melody_chords.extend([delta_time, dur+128, pat+256, ptc+384, vel+640])
    
        pe = e
    
        #=======================================================

    melody_chords = melody_chords[input_start_note*5:]
    
    SEQ_L = 3060
    STEP = SEQ_L // 3
    
    score_chunk = melody_chords[:SEQ_L]
    
    td = [649]
    
    td.extend(score_chunk[:STEP])
    
    td += [650]
    
    td.extend(score_chunk[-STEP:])
    
    td += [651]
    
    start_note = score_chunk[:STEP][-5:]
    end_note = score_chunk[-STEP:][:5]
    
    print('Done!')
    print('=' * 70)
    
    print('Start note', start_note)
    print('Etart note', end_note)
    
    print('=' * 70)
    print('Generating...')

    x = (torch.tensor(td, dtype=torch.long, device=DEVICE)[None, ...])
    
    with ctx:
      out = model.generate(x,
                          1032,
                          temperature=0.9,
                          return_prime=False,
                          verbose=False)
    
    y = out.tolist()
  
    output = []
    
    for i in range(0, len(y[0]), 5):
        if len(y[0][i:i+5]) == 5:
            output.append(y[0][i:i+5])
        
    print('=' * 70)
    print('Done!')
    print('=' * 70)

    start_note_idx = output.index(start_note)
    end_note_idx = len(output)-output[::-1].index(end_note)-1
    
    print('Start note check:', start_note in output, '---', start_note_idx)
    print('End note check:',end_note in output, '---', end_note_idx)
    
    #===============================================================================
    print('Rendering results...')

    data = score_chunk[:STEP] + TMIDIX.flatten(output[:end_note_idx]) + score_chunk[-STEP:]
    
    print('=' * 70)
    print('Sample INTs', data[:15])
    print('=' * 70)

    if len(data) != 0:
    
        song = data
        song_f = []
    
        time = 0
        dur = 0
        vel = 90
        pitch = 0
        pat = 0
        channel = 0
    
        for ss in song:
    
            if 0 < ss < 128:
    
                time += (ss * 32)
    
            if 128 < ss < 256:
    
                dur = (ss-128) * 32
    
            if 256 <= ss <= 384:
    
                pat = (ss-256)
                channel = pat // 8
    
                if channel == 9:
                    channel = 15
                if channel == 16:
                    channel = 9
    
            if 384 < ss < 640:
    
                pitch = (ss-384) % 128
    
            if 640 <= ss < 648:
    
                vel = ((ss-640)+1) * 15
    
                song_f.append(['note', time, dur, channel, pitch, vel, pat])
    
    song_f, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)


    fn1 = "Bridge-Music-Transformer-Composition"
    
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Bridge Music Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', output_midi_summary)
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
   
    app = gr.Blocks()
    
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Bridge Music Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate a seamless bridge between two parts of any composition</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Bridge-Music-Transformer&style=flat)\n\n")
        
        gr.Markdown("## Upload your MIDI or select a sample example MIDI below")
        gr.Markdown("### Please note that the MIDI must have at least 615 notes for this demo to work properly")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
        input_start_note = gr.Slider(0, 205, value=0, step=1, label="Start note number")
        run_btn = gr.Button("generate", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])

        run_event = run_btn.click(GenerateBridge, [input_midi, input_start_note],
                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
        
        gr.Examples(
            [["Sharing The Night Together.kar", 0],
             ["Sharing The Night Together.kar", 100],
             ["Deep Relaxation Melody #6.mid", 0],
             ["Deep Relaxation Melody #6.mid", 100]
            ],
            [input_midi, input_start_note],
            [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
            GenerateBridge,
            cache_examples=False,
        )
        app.queue().launch()