Spaces:
Sleeping
Sleeping
File size: 10,438 Bytes
482801d c180660 bfcfdc0 c180660 bfcfdc0 c180660 482801d 38a9fd9 c180660 f160b6e c180660 482801d c180660 f160b6e c180660 b2482f9 ef8d779 b2482f9 c180660 b2482f9 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 7c0e727 c180660 f160b6e c180660 482801d d825ef1 c180660 482801d c180660 bfcfdc0 7208f86 bfcfdc0 c180660 bfcfdc0 c180660 0e91e80 b3b8a5d 0e91e80 c180660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
# https://huggingface.co/spaces/asigalov61/Bridge-Music-Transformer
import os
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateBridge(input_midi, input_start_note):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
print('-' * 70)
print('Input file name:', fn)
print('Start note', input_start_note)
print('-' * 70)
print('Loading model...')
SEQ_LEN = 3074
PAD_IDX = 653
DEVICE = 'cpu' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 32, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Bridge_Music_Transformer_Trained_Model_30023_steps_0.482_loss_0.8523_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
print('Loading MIDI...')
#===============================================================================
# Raw single-track ms score
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#===============================================================================
# Augmented enhanced score notes
escore_notes = TMIDIX.recalculate_score_timings(TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32))
#=======================================================
# FINAL PROCESSING
melody_chords = []
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
pe = escore_notes[0]
for e in escore_notes:
#=======================================================
# Timings...
delta_time = max(0, min(127, e[1]-pe[1]))
# Durations and channels
dur = max(0, min(127, e[2]))
cha = max(0, min(15, e[3]))
# Patches
pat = max(0, min(128, e[6]))
# Pitches
if cha != 9:
ptc = max(1, min(127, e[4]))
else:
ptc = max(1, min(127, e[4]))+128
# Velocities
# Calculating octo-velocity
velocity = max(8, min(127, e[5]))
vel = round(velocity / 15)-1
#=======================================================
# FINAL NOTE SEQ
# Writing final note synchronously
melody_chords.extend([delta_time, dur+128, pat+256, ptc+384, vel+640])
pe = e
#=======================================================
melody_chords = melody_chords[input_start_note*5:]
SEQ_L = 3060
STEP = SEQ_L // 3
score_chunk = melody_chords[:SEQ_L]
td = [649]
td.extend(score_chunk[:STEP])
td += [650]
td.extend(score_chunk[-STEP:])
td += [651]
start_note = score_chunk[:STEP][-5:]
end_note = score_chunk[-STEP:][:5]
print('Done!')
print('=' * 70)
print('Start note', start_note)
print('Etart note', end_note)
print('=' * 70)
print('Generating...')
x = (torch.tensor(td, dtype=torch.long, device=DEVICE)[None, ...])
with ctx:
out = model.generate(x,
1032,
temperature=0.9,
return_prime=False,
verbose=False)
y = out.tolist()
output = []
for i in range(0, len(y[0]), 5):
if len(y[0][i:i+5]) == 5:
output.append(y[0][i:i+5])
print('=' * 70)
print('Done!')
print('=' * 70)
start_note_idx = output.index(start_note)
end_note_idx = len(output)-output[::-1].index(end_note)-1
print('Start note check:', start_note in output, '---', start_note_idx)
print('End note check:',end_note in output, '---', end_note_idx)
#===============================================================================
print('Rendering results...')
data = score_chunk[:STEP] + TMIDIX.flatten(output[:end_note_idx]) + score_chunk[-STEP:]
print('=' * 70)
print('Sample INTs', data[:15])
print('=' * 70)
if len(data) != 0:
song = data
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
pat = 0
channel = 0
for ss in song:
if 0 < ss < 128:
time += (ss * 32)
if 128 < ss < 256:
dur = (ss-128) * 32
if 256 <= ss <= 384:
pat = (ss-256)
channel = pat // 8
if channel == 9:
channel = 15
if channel == 16:
channel = 9
if 384 < ss < 640:
pitch = (ss-384) % 128
if 640 <= ss < 648:
vel = ((ss-640)+1) * 15
song_f.append(['note', time, dur, channel, pitch, vel, pat])
song_f, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
fn1 = "Bridge-Music-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Bridge Music Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Bridge Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate a seamless bridge between two parts of any composition</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Bridge-Music-Transformer&style=flat)\n\n")
gr.Markdown("## Upload your MIDI or select a sample example MIDI below")
gr.Markdown("### Please note that the MIDI must have at least 615 notes for this demo to work properly")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_start_note = gr.Slider(0, 205, value=0, step=1, label="Start note number")
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateBridge, [input_midi, input_start_note],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Sharing The Night Together.kar", 0],
["Sharing The Night Together.kar", 100],
["Deep Relaxation Melody #6.mid", 0],
["Deep Relaxation Melody #6.mid", 100]
],
[input_midi, input_start_note],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
GenerateBridge,
cache_examples=False,
)
app.queue().launch() |