Spaces:
Running
on
Zero
Running
on
Zero
#=================================================================================================================== | |
# | |
# X Trasformer Module | |
# | |
# Partial x-transformers code With useful modifications | |
# | |
# Version 1.0 | |
# | |
# Original source code courtesy of lucidrains | |
# https://github.com/lucidrains/x-transformers | |
# | |
# Original source code retrieved on 10/10/2023 | |
# | |
# Project Los Angeles | |
# Tegridy Code 2023 | |
#=================================================================================================================== | |
# Critical dependencies | |
# | |
# !pip install torch | |
# !pip install einops | |
#=================================================================================================================== | |
from functools import partial | |
from typing import Optional, Tuple | |
import os | |
os.environ['USE_FLASH_ATTENTION'] = '1' | |
import torch | |
from torch import nn, einsum, Tensor | |
import torch.nn.functional as F | |
# Flash attention | |
from torch.nn.attention import SDPBackend, sdpa_kernel | |
torch.backends.cuda.enable_flash_sdp(True) | |
from collections import namedtuple | |
from functools import wraps | |
from packaging import version | |
from dataclasses import dataclass | |
from einops import rearrange, repeat | |
# constants | |
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) | |
class Intermediates: | |
qk_similarities: Optional[Tensor] = None | |
pre_softmax_attn: Optional[Tensor] = None | |
post_softmax_attn: Optional[Tensor] = None | |
cached_kv: Optional[Tuple[Tensor, Tensor]] = None | |
def to_tuple(self): | |
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn) | |
# helpers | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
return val if exists(val) else d | |
def compact(arr): | |
return [*filter(exists, arr)] | |
def once(fn): | |
called = False | |
def inner(x): | |
nonlocal called | |
if called: | |
return | |
called = True | |
return fn(x) | |
return inner | |
print_once = once(print) | |
# functions for creating causal mask | |
# need a special one for onnx cpu (no support for .triu) | |
def create_causal_mask(i, j, device): | |
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1) | |
def onnx_create_causal_mask(i, j, device): | |
r = torch.arange(i, device = device) | |
causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j') | |
causal_mask = F.pad(causal_mask, (j - i, 0), value = False) | |
return causal_mask | |
# main class | |
class Attend(nn.Module): | |
def __init__( | |
self, | |
*, | |
dropout = 0., | |
causal = False, | |
heads = None, | |
talking_heads = False, | |
sparse_topk = None, | |
scale = None, | |
qk_norm = False, | |
flash = False, | |
add_zero_kv = False, | |
onnxable = False | |
): | |
super().__init__() | |
self.scale = scale | |
self.qk_norm = qk_norm | |
self.causal = causal | |
self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask | |
self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax | |
self.dropout = dropout | |
self.attn_dropout = nn.Dropout(dropout) | |
# talking heads | |
assert not (flash and talking_heads), 'talking heads not compatible with flash attention' | |
self.talking_heads = talking_heads | |
if talking_heads: | |
self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) | |
self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False) | |
# sparse topk | |
assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention' | |
self.sparse_topk = sparse_topk | |
# add a key / value token composed of zeros | |
# in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html | |
self.add_zero_kv = add_zero_kv | |
# flash attention | |
self.flash = flash | |
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' | |
# determine efficient attention configs for cuda and cpu | |
self.cpu_config = EfficientAttentionConfig(True, True, True) | |
self.cuda_config = None | |
if not torch.cuda.is_available() or not flash: | |
return | |
device_properties = torch.cuda.get_device_properties(torch.device('cuda')) | |
major, minor = device_properties.major, device_properties.minor | |
if (major, minor) == (8, 0): | |
print_once('A100 GPU detected, using flash attention if input tensor is on cuda') | |
self.cuda_config = EfficientAttentionConfig(True, False, False) | |
elif (major, minor) == (9, 0): | |
print_once('H100 GPU detected, using flash attention') | |
self.cuda_config = EfficientAttentionConfig(True, False, False) | |
else: | |
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda') | |
self.cuda_config = EfficientAttentionConfig(False, True, True) | |
def flash_attn( | |
self, | |
q, k, v, | |
mask = None, | |
attn_bias = None | |
): | |
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device | |
# Recommended for multi-query single-key-value attention by Tri Dao | |
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64]) | |
if k.ndim == 3: | |
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q) | |
if v.ndim == 3: | |
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q) | |
# handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention | |
if self.qk_norm: | |
default_scale = q.shape[-1] ** -0.5 | |
q = q * (self.scale / default_scale) | |
# Check if mask exists and expand to compatible shape | |
# The mask is B L, so it would have to be expanded to B H N L | |
causal = self.causal | |
# in the case of kv caching with one token (q_len == 1), just turn off causal masking | |
# in speculative decoding, this may go up to 5-6, so right aligned causal mask will be needed there | |
if q_len == 1 and causal: | |
causal = False | |
# expand key padding mask | |
if exists(mask): | |
assert mask.ndim == 4 | |
mask = mask.expand(batch, heads, q_len, k_len) | |
# handle kv cache - this should be bypassable in updated flash attention 2 | |
if k_len > q_len and causal: | |
causal_mask = self.create_causal_mask(q_len, k_len, device = device) | |
if not exists(mask): | |
mask = ~causal_mask | |
else: | |
mask = mask & ~causal_mask | |
causal = False | |
# manually handle causal mask, if another mask was given | |
row_is_entirely_masked = None | |
if exists(mask) and causal: | |
causal_mask = self.create_causal_mask(q_len, k_len, device = device) | |
mask = mask & ~causal_mask | |
# protect against an entire row being masked out | |
row_is_entirely_masked = ~mask.any(dim = -1) | |
mask[..., 0] = mask[..., 0] | row_is_entirely_masked | |
causal = False | |
# handle alibi positional bias | |
# convert from bool to float | |
if exists(attn_bias): | |
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1) | |
# if mask given, the mask would already contain the causal mask from above logic | |
# otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number | |
mask_value = -torch.finfo(q.dtype).max | |
if exists(mask): | |
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2) | |
elif causal: | |
causal_mask = self.create_causal_mask(q_len, k_len, device = device) | |
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2) | |
causal = False | |
# scaled_dot_product_attention handles attn_mask either as bool or additive bias | |
# make it an additive bias here | |
mask = attn_bias | |
# Check if there is a compatible device for flash attention | |
config = self.cuda_config if is_cuda else self.cpu_config | |
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale | |
# Legacy code... | |
# with torch.backends.cuda.sdp_kernel(enable_math=True, enable_mem_efficient=True): | |
# with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION]): | |
# PyTorch 2.3-2.4 SDPA backend code... | |
# with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION]): | |
with sdpa_kernel([SDPBackend.FLASH_ATTENTION]): | |
# New PyTorch 2.5 SDPA backend code: | |
# with sdpa_kernel(SDPBackend.CUDNN_ATTENTION): | |
out = F.scaled_dot_product_attention( | |
q, k, v, | |
attn_mask = mask, | |
dropout_p = self.dropout if self.training else 0., | |
is_causal = causal | |
) | |
# for a row that is entirely masked out, should zero out the output of that row token | |
if exists(row_is_entirely_masked): | |
out = out.masked_fill(row_is_entirely_masked[..., None], 0.) | |
return out, Intermediates() | |
def forward( | |
self, | |
q, k, v, | |
mask = None, | |
attn_bias = None, | |
prev_attn = None | |
): | |
""" | |
einstein notation | |
b - batch | |
h - heads | |
n, i, j - sequence length (base sequence length, source, target) | |
d - feature dimension | |
""" | |
n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device | |
scale = default(self.scale, q.shape[-1] ** -0.5) | |
causal = self.causal | |
# handle kv cached decoding | |
if n == 1 and causal: | |
causal = False | |
# handle grouped multi-query attention | |
if kv_heads == 1: | |
k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v)) | |
elif kv_heads < heads: | |
k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v)) | |
# handle zero kv, as means for allowing network to attend to nothing | |
if self.add_zero_kv: | |
k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v)) | |
if exists(mask): | |
mask = F.pad(mask, (1, 0), value = True) | |
if exists(attn_bias): | |
attn_bias = F.pad(attn_bias, (1, 0), value = 0.) | |
if self.flash: | |
assert not exists(prev_attn), 'residual attention not compatible with flash attention' | |
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias) | |
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d' | |
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale | |
if exists(prev_attn): | |
dots = dots + prev_attn | |
qk_similarities = dots.clone() | |
if self.talking_heads: | |
dots = self.pre_softmax_talking_heads(dots) | |
if exists(attn_bias): | |
dots = dots + attn_bias | |
i, j, dtype = *dots.shape[-2:], dots.dtype | |
mask_value = -torch.finfo(dots.dtype).max | |
if exists(self.sparse_topk) and self.sparse_topk < j: | |
top_values, _ = dots.topk(self.sparse_topk, dim = -1) | |
sparse_topk_mask = dots < top_values[..., -1:] | |
mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask | |
if exists(mask): | |
dots = dots.masked_fill(~mask, mask_value) | |
if causal: | |
causal_mask = self.create_causal_mask(i, j, device = device) | |
dots = dots.masked_fill(causal_mask, mask_value) | |
pre_softmax_attn = dots.clone() | |
attn = self.attn_fn(dots, dim = -1) | |
attn = attn.type(dtype) | |
post_softmax_attn = attn.clone() | |
attn = self.attn_dropout(attn) | |
if self.talking_heads: | |
attn = self.post_softmax_talking_heads(attn) | |
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v) | |
intermediates = Intermediates( | |
qk_similarities = qk_similarities, | |
pre_softmax_attn = pre_softmax_attn, | |
post_softmax_attn = post_softmax_attn | |
) | |
return out, intermediates | |
#=================================================================================================================== | |
from math import ceil, log | |
from typing import Optional, Union, Tuple, Callable | |
import torch | |
from torch import nn, Tensor | |
from torch.nn import Module | |
import torch.nn.functional as F | |
from einops import rearrange, pack, unpack | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
return val if exists(val) else d | |
def identity(t, *args, **kwargs): | |
return t | |
def cast_tuple(t, length = 1): | |
return t if isinstance(t, tuple) else (t,) * length | |
def eval_decorator(fn): | |
def inner(self, *args, **kwargs): | |
was_training = self.training | |
self.eval() | |
out = fn(self, *args, **kwargs) | |
self.train(was_training) | |
return out | |
return inner | |
# for variable lengthed prefixes | |
def align_right(t, lens, pad_id = 0): | |
batch, seq_len, device, dtype = *t.shape, t.device, t.dtype | |
assert lens.ndim == 1 and lens.shape[0] == batch | |
assert lens.amax() <= seq_len | |
pad_lens = seq_len - lens | |
max_pad_len = pad_lens.amax() | |
batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None] | |
prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long) | |
t = F.pad(t, (max_pad_len, 0), value = 0) | |
offset = max_pad_len - pad_lens | |
aligned = t[batch_arange, prompt_len_arange + offset[..., None]] | |
return aligned | |
# nucleus | |
def top_p(logits, thres = 0.9): | |
sorted_logits, sorted_indices = torch.sort(logits, descending = True) | |
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1) | |
sorted_indices_to_remove = cum_probs > thres | |
sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False) | |
sorted_logits[sorted_indices_to_remove] = float('-inf') | |
return sorted_logits.scatter(1, sorted_indices, sorted_logits) | |
# topk | |
def top_k(logits, frac_num_tokens = 0.1, k = None): | |
num_tokens = logits.shape[-1] | |
k = default(k, ceil(frac_num_tokens * num_tokens)) | |
k = min(k, num_tokens) | |
val, ind = torch.topk(logits, k) | |
probs = torch.full_like(logits, float('-inf')) | |
probs.scatter_(1, ind, val) | |
return probs | |
# top_a | |
def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02): | |
probs = F.softmax(logits, dim = -1) | |
max_probs = torch.amax(probs, dim = -1, keepdim = True) | |
limit = torch.pow(max_probs, min_p_pow) * min_p_ratio | |
return torch.where(probs < limit, float('-inf'), logits) | |
# contrastive decoding function | |
def contrastive_decode_fn( | |
expert_logits, | |
amateur_logits, | |
alpha = 0.1, | |
beta = 0.5 | |
): | |
""" | |
Appendix A Algorithm 2 | |
https://arxiv.org/abs/2309.09117 | |
""" | |
cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True) | |
diffs = (1 + beta) * expert_logits - beta * amateur_logits | |
contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max) | |
return contrastive_decode_logits | |
# autoregressive wrapper class | |
class AutoregressiveWrapper(Module): | |
def __init__( | |
self, | |
net, | |
ignore_index = -100, | |
pad_value = 0, | |
mask_prob = 0., | |
add_attn_z_loss = False, | |
return_cache=False | |
): | |
super().__init__() | |
self.pad_value = pad_value | |
self.ignore_index = ignore_index | |
self.net = net | |
self.max_seq_len = net.max_seq_len | |
# paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432 | |
assert mask_prob < 1. | |
self.mask_prob = mask_prob | |
# whether to add router z-loss | |
self.add_attn_z_loss = add_attn_z_loss | |
self.return_cache = return_cache | |
def generate( | |
self, | |
prompts, | |
seq_len, | |
eos_token = None, | |
temperature = 1., | |
prompt_lens: Optional[Tensor] = None, | |
filter_logits_fn: Callable = top_k, | |
restrict_to_max_seq_len = True, | |
amateur_model: Optional[Union[Module, Tuple[Module]]] = None, | |
filter_kwargs: dict = dict(), | |
contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict( | |
beta = 0.5, | |
alpha = 0.1 | |
), | |
cache_kv = True, | |
verbose=True, | |
return_prime=False, | |
**kwargs | |
): | |
max_seq_len, device = self.max_seq_len, prompts.device | |
prompts, ps = pack([prompts], '* n') | |
b, t = prompts.shape | |
# handle variable lengthed prompts (prefixes) | |
seq_start_pos = None | |
if exists(prompt_lens): | |
prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value) | |
seq_start_pos = t - prompt_lens | |
# output from which sampled tokens appended to | |
out = prompts | |
if verbose: | |
print("Generating sequence of max length:", seq_len) | |
# kv caches | |
cache = None | |
# if doing contrastive decoding, turn off filter automatically | |
if exists(amateur_model): | |
amateur_model = cast_tuple(amateur_model) | |
contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs) | |
assert len(amateur_model) == len(contrastive_decode_kwargs) | |
amateur_caches = [None] * len(amateur_model) | |
filter_logits_fn = identity | |
for i, module in enumerate(amateur_model): | |
if isinstance(module, AutoregressiveWrapper): | |
amateur_model[i] = module.net | |
module.eval() | |
# sampling up to seq_len | |
for sl in range(seq_len): | |
if restrict_to_max_seq_len: | |
x = out[:, -max_seq_len:] | |
if exists(cache): | |
for inter in cache.attn_intermediates: | |
inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv] | |
logits, new_cache = self.net( | |
x, | |
return_intermediates = True, | |
cache = cache, | |
seq_start_pos = seq_start_pos, | |
**kwargs | |
) | |
if cache_kv and self.net.can_cache_kv: | |
cache = new_cache | |
logits = logits[:, -1] | |
# handle contrastive decoding, Li et al. | |
# https://arxiv.org/abs/2210.15097 | |
if exists(amateur_model): | |
for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)): | |
amateur_logits, next_amateur_cache = amateur( | |
x, | |
return_intermediates = True, | |
cache = amateur_cache, | |
seq_start_pos = seq_start_pos, | |
**kwargs | |
) | |
amateur_logits = amateur_logits[:, -1] | |
assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model' | |
logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs) | |
if cache_kv and amateur.can_cache_kv: | |
amateur_caches[i] = next_amateur_cache | |
# filter by top_k, top_p (nucleus), top_a, or custom | |
filtered_logits = filter_logits_fn(logits, **filter_kwargs) | |
probs = F.softmax(filtered_logits / temperature, dim=-1) | |
sample = torch.multinomial(probs, 1) | |
out = torch.cat((out, sample), dim=-1) | |
if verbose: | |
if sl % 32 == 0: | |
print(sl, '/', seq_len) | |
if exists(eos_token): | |
is_eos_tokens = (out == eos_token) | |
if is_eos_tokens.any(dim = -1).all(): | |
# mask out everything after the eos tokens | |
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1)) | |
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1 | |
out = out.masked_fill(mask, self.pad_value) | |
if verbose: | |
print('Model called the end of sequence at:', sl, '/', seq_len) | |
break | |
if return_prime: | |
return out[:, :] | |
else: | |
return out[:, t:] | |
# out, = unpack(out, ps, '* n') | |
# return out | |
def compute_accuracy(self, logits, labels): | |
out = torch.argmax(logits, dim=-1) | |
out = out.flatten() | |
labels = labels.flatten() | |
mask = (labels != self.ignore_index) # can also be self.pad_value (your choice) | |
out = out[mask] | |
labels = labels[mask] | |
num_right = (out == labels) | |
num_right = torch.sum(num_right).type(torch.float32) | |
acc = num_right / len(labels) | |
return acc | |
def forward(self, x, **kwargs): | |
seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss | |
inp, target = x[:, :-1], x[:, 1:] | |
inp = torch.where(inp == ignore_index, self.pad_value, inp) | |
if self.mask_prob > 0.: | |
rand = torch.randn(inp.shape, device = x.device) | |
rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out | |
num_mask = min(int(seq * self.mask_prob), seq - 1) | |
indices = rand.topk(num_mask, dim = -1).indices | |
mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool() | |
kwargs.update(self_attn_kv_mask = mask) | |
logits, cache = self.net( | |
inp, | |
return_intermediates = True, | |
return_attn_z_loss = add_attn_z_loss, | |
**kwargs | |
) | |
acc = self.compute_accuracy(logits, target) | |
loss = F.cross_entropy( | |
rearrange(logits, 'b n c -> b c n'), | |
target, | |
ignore_index = ignore_index | |
) | |
if add_attn_z_loss: | |
loss = loss + cache.attn_z_loss | |
if self.return_cache: | |
return loss, acc, cache | |
else: | |
return loss, acc | |
#=============================================================================== | |
import math | |
from random import random | |
import torch | |
from torch import nn, einsum, Tensor | |
import torch.nn.functional as F | |
from functools import partial, wraps | |
from inspect import isfunction | |
from collections import namedtuple | |
from dataclasses import dataclass | |
from typing import List, Callable, Optional | |
from einops import rearrange, repeat, reduce, pack, unpack | |
from einops.layers.torch import Rearrange | |
# constants | |
DEFAULT_DIM_HEAD = 64 | |
class LayerIntermediates: | |
hiddens: Optional[List[Tensor]] = None | |
attn_intermediates: Optional[List[Intermediates]] = None | |
layer_hiddens: Optional[List[Tensor]] = None | |
attn_z_loss: Optional[Tensor] = None | |
mems: Optional[Tensor] = None | |
# helpers | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def cast_tuple(val, depth): | |
return val if isinstance(val, tuple) else (val,) * depth | |
def divisible_by(num, den): | |
return (num % den) == 0 | |
def maybe(fn): | |
def inner(x, *args, **kwargs): | |
if not exists(x): | |
return x | |
return fn(x, *args, **kwargs) | |
return inner | |
class always(): | |
def __init__(self, val): | |
self.val = val | |
def __call__(self, *args, **kwargs): | |
return self.val | |
class not_equals(): | |
def __init__(self, val): | |
self.val = val | |
def __call__(self, x, *args, **kwargs): | |
return x != self.val | |
class equals(): | |
def __init__(self, val): | |
self.val = val | |
def __call__(self, x, *args, **kwargs): | |
return x == self.val | |
def Sequential(*modules): | |
return nn.Sequential(*filter(exists, modules)) | |
# tensor helpers | |
def max_neg_value(tensor): | |
return -torch.finfo(tensor.dtype).max | |
def l2norm(t, groups = 1): | |
t = rearrange(t, '... (g d) -> ... g d', g = groups) | |
t = F.normalize(t, p = 2, dim = -1) | |
return rearrange(t, '... g d -> ... (g d)') | |
def pad_at_dim(t, pad, dim = -1, value = 0.): | |
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1) | |
zeros = ((0, 0) * dims_from_right) | |
return F.pad(t, (*zeros, *pad), value = value) | |
def or_reduce(masks): | |
head, *body = masks | |
for rest in body: | |
head = head | rest | |
return head | |
# auxiliary loss helpers | |
def calc_z_loss( | |
pre_softmax_attns: List[Tensor], | |
mask = None, | |
weight = 1. | |
): | |
# the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906 | |
# in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects | |
# also used in PaLM as one of the measures | |
lse = 0. | |
for attn in pre_softmax_attns: | |
lse = lse + attn.logsumexp(dim = -1) | |
loss = torch.square(lse) | |
loss = reduce(loss, 'b h n -> b n', 'sum') | |
if not exists(mask): | |
return loss.mean() * weight | |
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5) | |
return loss * weight | |
# init helpers | |
def init_zero_(layer): | |
nn.init.constant_(layer.weight, 0.) | |
if exists(layer.bias): | |
nn.init.constant_(layer.bias, 0.) | |
# keyword argument helpers | |
def pick_and_pop(keys, d): | |
values = list(map(lambda key: d.pop(key), keys)) | |
return dict(zip(keys, values)) | |
def group_dict_by_key(cond, d): | |
return_val = [dict(),dict()] | |
for key in d.keys(): | |
match = bool(cond(key)) | |
ind = int(not match) | |
return_val[ind][key] = d[key] | |
return (*return_val,) | |
def string_begins_with(prefix, str): | |
return str.startswith(prefix) | |
def group_by_key_prefix(prefix, d): | |
return group_dict_by_key(partial(string_begins_with, prefix), d) | |
def groupby_prefix_and_trim(prefix, d): | |
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) | |
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) | |
return kwargs_without_prefix, kwargs | |
# structured dropout, more effective than traditional attention dropouts | |
def dropout_seq(seq, mask, dropout): | |
b, n, *_, device = *seq.shape, seq.device | |
logits = torch.randn(b, n, device = device) | |
if exists(mask): | |
mask_value = max_neg_value(logits) | |
logits = logits.masked_fill(~mask, mask_value) | |
keep_prob = 1. - dropout | |
num_keep = max(1, int(keep_prob * n)) | |
keep_indices = logits.topk(num_keep, dim = 1).indices | |
batch_indices = torch.arange(b, device = device) | |
batch_indices = rearrange(batch_indices, 'b -> b 1') | |
seq = seq[batch_indices, keep_indices] | |
if exists(mask): | |
seq_counts = mask.sum(dim = -1) | |
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int() | |
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1') | |
mask = mask[batch_indices, keep_indices] & keep_mask | |
return seq, mask | |
# activations | |
class ReluSquared(nn.Module): | |
def forward(self, x): | |
return F.relu(x) ** 2 | |
# embedding | |
class TokenEmbedding(nn.Module): | |
def __init__(self, dim, num_tokens, l2norm_embed = False): | |
super().__init__() | |
self.l2norm_embed = l2norm_embed | |
self.emb = nn.Embedding(num_tokens, dim) | |
def forward(self, x): | |
token_emb = self.emb(x) | |
return l2norm(token_emb) if self.l2norm_embed else token_emb | |
# positional embeddings | |
class AbsolutePositionalEmbedding(nn.Module): | |
def __init__(self, dim, max_seq_len, l2norm_embed = False): | |
super().__init__() | |
self.scale = dim ** -0.5 if not l2norm_embed else 1. | |
self.max_seq_len = max_seq_len | |
self.l2norm_embed = l2norm_embed | |
self.emb = nn.Embedding(max_seq_len, dim) | |
def forward(self, x, pos = None, seq_start_pos = None): | |
seq_len, device = x.shape[1], x.device | |
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' | |
if not exists(pos): | |
pos = torch.arange(seq_len, device = device) | |
if exists(seq_start_pos): | |
pos = (pos - seq_start_pos[..., None]).clamp(min = 0) | |
pos_emb = self.emb(pos) | |
pos_emb = pos_emb * self.scale | |
return l2norm(pos_emb) if self.l2norm_embed else pos_emb | |
class ScaledSinusoidalEmbedding(nn.Module): | |
def __init__(self, dim, theta = 10000): | |
super().__init__() | |
assert divisible_by(dim, 2) | |
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) | |
half_dim = dim // 2 | |
freq_seq = torch.arange(half_dim).float() / half_dim | |
inv_freq = theta ** -freq_seq | |
self.register_buffer('inv_freq', inv_freq, persistent = False) | |
def forward(self, x, pos = None, seq_start_pos = None): | |
seq_len, device = x.shape[1], x.device | |
if not exists(pos): | |
pos = torch.arange(seq_len, device = device) | |
if exists(seq_start_pos): | |
pos = pos - seq_start_pos[..., None] | |
emb = einsum('i, j -> i j', pos, self.inv_freq) | |
emb = torch.cat((emb.sin(), emb.cos()), dim = -1) | |
return emb * self.scale | |
class RelativePositionBias(nn.Module): | |
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8): | |
super().__init__() | |
self.scale = scale | |
self.causal = causal | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128): | |
ret = 0 | |
n = -relative_position | |
if not causal: | |
num_buckets //= 2 | |
ret += (n < 0).long() * num_buckets | |
n = torch.abs(n) | |
else: | |
n = torch.max(n, torch.zeros_like(n)) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).long() | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def device(self): | |
return next(self.parameters()).device | |
def forward(self, i, j): | |
device = self.device | |
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device) | |
k_pos = torch.arange(j, dtype = torch.long, device = device) | |
rel_pos = k_pos[None, :] - q_pos[:, None] | |
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance) | |
values = self.relative_attention_bias(rp_bucket) | |
bias = rearrange(values, 'i j h -> h i j') | |
return bias * self.scale | |
class DynamicPositionBias(nn.Module): | |
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False): | |
super().__init__() | |
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1' | |
self.log_distance = log_distance | |
self.mlp = nn.ModuleList([]) | |
self.mlp.append(Sequential( | |
nn.Linear(1, dim), | |
nn.LayerNorm(dim) if norm else None, | |
nn.SiLU() | |
)) | |
for _ in range(depth - 1): | |
self.mlp.append(Sequential( | |
nn.Linear(dim, dim), | |
nn.LayerNorm(dim) if norm else None, | |
nn.SiLU() | |
)) | |
self.mlp.append(nn.Linear(dim, heads)) | |
def device(self): | |
return next(self.parameters()).device | |
def forward(self, i, j): | |
assert i == j | |
n, device = j, self.device | |
# get the (n x n) matrix of distances | |
seq_arange = torch.arange(n, device = device) | |
context_arange = torch.arange(n, device = device) | |
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j') | |
indices += (n - 1) | |
# input to continuous positions MLP | |
pos = torch.arange(-n + 1, n, device = device).float() | |
pos = rearrange(pos, '... -> ... 1') | |
if self.log_distance: | |
pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1) | |
for layer in self.mlp: | |
pos = layer(pos) | |
# get position biases | |
bias = pos[indices] | |
bias = rearrange(bias, 'i j h -> h i j') | |
return bias | |
class AlibiPositionalBias(nn.Module): | |
def __init__(self, heads, total_heads, **kwargs): | |
super().__init__() | |
self.heads = heads | |
self.total_heads = total_heads | |
slopes = Tensor(self._get_slopes(heads)) | |
slopes = rearrange(slopes, 'h -> h 1 1') | |
self.register_buffer('slopes', slopes, persistent = False) | |
self.register_buffer('bias', None, persistent = False) | |
def get_bias(self, i, j, device): | |
i_arange = torch.arange(j - i, j, device = device) | |
j_arange = torch.arange(j, device = device) | |
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1')) | |
return bias | |
def _get_slopes(heads): | |
def get_slopes_power_of_2(n): | |
start = (2**(-2**-(math.log2(n)-3))) | |
ratio = start | |
return [start*ratio**i for i in range(n)] | |
if math.log2(heads).is_integer(): | |
return get_slopes_power_of_2(heads) | |
closest_power_of_2 = 2 ** math.floor(math.log2(heads)) | |
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2] | |
def device(self): | |
return next(self.buffers()).device | |
def forward(self, i, j): | |
h, device = self.total_heads, self.device | |
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i: | |
return self.bias[..., -i:, -j:] | |
bias = self.get_bias(i, j, device) | |
bias = bias * self.slopes | |
num_heads_unalibied = h - bias.shape[0] | |
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0) | |
self.register_buffer('bias', bias, persistent = False) | |
return self.bias | |
class RotaryEmbedding(nn.Module): | |
def __init__( | |
self, | |
dim, | |
use_xpos = False, | |
scale_base = 512, | |
interpolation_factor = 1., | |
base = 10000, | |
base_rescale_factor = 1. | |
): | |
super().__init__() | |
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning | |
# has some connection to NTK literature | |
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ | |
base *= base_rescale_factor ** (dim / (dim - 2)) | |
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer('inv_freq', inv_freq) | |
assert interpolation_factor >= 1. | |
self.interpolation_factor = interpolation_factor | |
if not use_xpos: | |
self.register_buffer('scale', None) | |
return | |
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) | |
self.scale_base = scale_base | |
self.register_buffer('scale', scale) | |
def forward(self, seq_len): | |
device = self.inv_freq.device | |
t = torch.arange(seq_len, device = device).type_as(self.inv_freq) | |
t = t / self.interpolation_factor | |
freqs = torch.einsum('i , j -> i j', t, self.inv_freq) | |
freqs = torch.cat((freqs, freqs), dim = -1) | |
if not exists(self.scale): | |
return freqs, 1. | |
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base | |
scale = self.scale ** rearrange(power, 'n -> n 1') | |
scale = torch.cat((scale, scale), dim = -1) | |
return freqs, scale | |
def rotate_half(x): | |
x = rearrange(x, '... (j d) -> ... j d', j = 2) | |
x1, x2 = x.unbind(dim = -2) | |
return torch.cat((-x2, x1), dim = -1) | |
def apply_rotary_pos_emb(t, freqs, scale = 1): | |
rot_dim, seq_len = freqs.shape[-1], t.shape[-2] | |
freqs = freqs[-seq_len:, :] | |
if t.ndim == 4 and freqs.ndim == 3: | |
freqs = rearrange(freqs, 'b n d -> b 1 n d') | |
# partial rotary embeddings, Wang et al. GPT-J | |
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] | |
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) | |
return torch.cat((t, t_unrotated), dim = -1) | |
# norms | |
class Scale(nn.Module): | |
def __init__(self, value, fn): | |
super().__init__() | |
self.value = value | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
out = self.fn(x, **kwargs) | |
scale_fn = lambda t: t * self.value | |
if not isinstance(out, tuple): | |
return scale_fn(out) | |
return (scale_fn(out[0]), *out[1:]) | |
class ScaleNorm(nn.Module): | |
def __init__(self, dim, eps = 1e-5): | |
super().__init__() | |
self.eps = eps | |
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5)) | |
def forward(self, x): | |
norm = torch.norm(x, dim = -1, keepdim = True) | |
return x / norm.clamp(min = self.eps) * self.g | |
class RMSNorm(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.scale = dim ** 0.5 | |
self.g = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
return F.normalize(x, dim = -1) * self.scale * self.g | |
class SimpleRMSNorm(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.scale = dim ** 0.5 | |
def forward(self, x): | |
return F.normalize(x, dim = -1) * self.scale | |
# residual and residual gates | |
class Residual(nn.Module): | |
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.): | |
super().__init__() | |
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None | |
self.scale_residual_constant = scale_residual_constant | |
def forward(self, x, residual): | |
if exists(self.residual_scale): | |
residual = residual * self.residual_scale | |
if self.scale_residual_constant != 1: | |
residual = residual * self.scale_residual_constant | |
return x + residual | |
class GRUGating(nn.Module): | |
def __init__(self, dim, scale_residual = False, **kwargs): | |
super().__init__() | |
self.gru = nn.GRUCell(dim, dim) | |
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None | |
def forward(self, x, residual): | |
if exists(self.residual_scale): | |
residual = residual * self.residual_scale | |
gated_output = self.gru( | |
rearrange(x, 'b n d -> (b n) d'), | |
rearrange(residual, 'b n d -> (b n) d') | |
) | |
return gated_output.reshape_as(x) | |
# token shifting | |
def shift(t, amount, mask = None): | |
if amount == 0: | |
return t | |
else: | |
amount = min(amount, t.shape[1]) | |
if exists(mask): | |
t = t.masked_fill(~mask[..., None], 0.) | |
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.) | |
class ShiftTokens(nn.Module): | |
def __init__(self, shifts, fn): | |
super().__init__() | |
self.fn = fn | |
self.shifts = tuple(shifts) | |
def forward(self, x, **kwargs): | |
mask = kwargs.get('mask', None) | |
shifts = self.shifts | |
segments = len(shifts) | |
feats_per_shift = x.shape[-1] // segments | |
splitted = x.split(feats_per_shift, dim = -1) | |
segments_to_shift, rest = splitted[:segments], splitted[segments:] | |
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts))) | |
x = torch.cat((*segments_to_shift, *rest), dim = -1) | |
return self.fn(x, **kwargs) | |
# feedforward | |
class GLU(nn.Module): | |
def __init__( | |
self, | |
dim_in, | |
dim_out, | |
activation: Callable, | |
mult_bias = False | |
): | |
super().__init__() | |
self.act = activation | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1. | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim = -1) | |
return x * self.act(gate) * self.mult_bias | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_out = None, | |
mult = 4, | |
glu = False, | |
glu_mult_bias = False, | |
swish = False, | |
relu_squared = False, | |
post_act_ln = False, | |
dropout = 0., | |
no_bias = False, | |
zero_init_output = False | |
): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
if relu_squared: | |
activation = ReluSquared() | |
elif swish: | |
activation = nn.SiLU() | |
else: | |
activation = nn.GELU() | |
if glu: | |
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias) | |
else: | |
project_in = nn.Sequential( | |
nn.Linear(dim, inner_dim, bias = not no_bias), | |
activation | |
) | |
self.ff = Sequential( | |
project_in, | |
nn.LayerNorm(inner_dim) if post_act_ln else None, | |
nn.Dropout(dropout), | |
nn.Linear(inner_dim, dim_out, bias = not no_bias) | |
) | |
# init last linear layer to 0 | |
if zero_init_output: | |
init_zero_(self.ff[-1]) | |
def forward(self, x): | |
return self.ff(x) | |
# attention. it is all we need | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_head = DEFAULT_DIM_HEAD, | |
heads = 8, | |
causal = False, | |
flash = False, | |
talking_heads = False, | |
head_scale = False, | |
sparse_topk = None, | |
num_mem_kv = 0, | |
dropout = 0., | |
on_attn = False, | |
gate_value_heads = False, | |
gate_values = False, | |
zero_init_output = False, | |
max_attend_past = None, | |
qk_norm = False, | |
qk_norm_groups = 1, | |
qk_norm_scale = 10, | |
qk_norm_dim_scale = False, | |
one_kv_head = False, | |
kv_heads = None, | |
shared_kv = False, | |
value_dim_head = None, | |
tensor_product = False, # https://arxiv.org/abs/2208.06061 | |
add_zero_kv = False, # same as add_zero_attn in pytorch | |
rotary_embed_values = False, | |
onnxable = False | |
): | |
super().__init__() | |
self.scale = dim_head ** -0.5 | |
self.heads = heads | |
self.causal = causal | |
self.max_attend_past = max_attend_past | |
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both' | |
value_dim_head = default(value_dim_head, dim_head) | |
kv_heads = default(kv_heads, heads) | |
kv_heads = 1 if one_kv_head else kv_heads | |
assert divisible_by(heads, kv_heads) | |
self.kv_heads = kv_heads | |
q_dim = dim_head * heads | |
k_dim = dim_head * kv_heads | |
v_dim = value_dim_head * kv_heads | |
out_dim = value_dim_head * heads | |
self.to_q = nn.Linear(dim, q_dim, bias = False) | |
self.to_k = nn.Linear(dim, k_dim, bias = False) | |
# shared key / values, for further memory savings during inference | |
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values' | |
self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None | |
# relations projection from tp-attention | |
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None | |
# add GLU gating for aggregated values, from alphafold2 | |
self.to_v_gate = None | |
if gate_values: | |
self.to_v_gate = nn.Linear(dim, out_dim) | |
nn.init.constant_(self.to_v_gate.weight, 0) | |
nn.init.constant_(self.to_v_gate.bias, 10) | |
# add per head gating of the output values, from 'Attend to nothing' paper | |
self.to_v_head_gate = None | |
if gate_value_heads: | |
self.to_v_head_gate = nn.Linear(dim, heads) | |
nn.init.constant_(self.to_v_head_gate.weight, 0) | |
nn.init.constant_(self.to_v_head_gate.bias, 10) | |
# cosine sim attention | |
self.qk_norm = qk_norm | |
self.qk_norm_groups = qk_norm_groups | |
self.qk_norm_scale = qk_norm_scale | |
# whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442 | |
self.qk_norm_dim_scale = qk_norm_dim_scale | |
self.qk_norm_q_scale = self.qk_norm_k_scale = 1 | |
if qk_norm and qk_norm_dim_scale: | |
self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) | |
self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head)) | |
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups' | |
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)' | |
# attend class - includes core attention algorithm + talking heads | |
self.attend = Attend( | |
heads = heads, | |
causal = causal, | |
talking_heads = talking_heads, | |
dropout = dropout, | |
sparse_topk = sparse_topk, | |
qk_norm = qk_norm, | |
scale = qk_norm_scale if qk_norm else self.scale, | |
add_zero_kv = add_zero_kv, | |
flash = flash, | |
onnxable = onnxable | |
) | |
# head scaling | |
self.head_scale = head_scale | |
if head_scale: | |
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1)) | |
# explicit topk sparse attention | |
self.sparse_topk = sparse_topk | |
# add memory key / values | |
self.num_mem_kv = num_mem_kv | |
if num_mem_kv > 0: | |
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) | |
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) | |
# attention on attention | |
self.attn_on_attn = on_attn | |
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False) | |
# whether to rotate positions into values, for absolute positions in addition to relative | |
self.rotary_embed_values = rotary_embed_values | |
# init output projection 0 | |
if zero_init_output: | |
init_zero_(self.to_out) | |
def forward( | |
self, | |
x, | |
context = None, | |
mask = None, | |
context_mask = None, | |
attn_mask = None, | |
rel_pos = None, | |
rotary_pos_emb = None, | |
prev_attn = None, | |
mem = None, | |
return_intermediates = False, | |
cache: Optional[Intermediates] = None, | |
): | |
b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context) | |
kv_input = default(context, x) | |
q_input = x | |
k_input = kv_input | |
v_input = kv_input | |
r_input = x | |
if exists(mem): | |
k_input, mem_packed_shape = pack([mem, k_input], 'b * d') | |
v_input, _ = pack([mem, v_input], 'b * d') | |
q = self.to_q(q_input) | |
k = self.to_k(k_input) | |
v = self.to_v(v_input) if exists(self.to_v) else k | |
r = self.to_r(r_input) if exists(self.to_r) else None | |
q = rearrange(q, 'b n (h d) -> b h n d', h = h) | |
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r)) | |
if exists(cache) and not has_context: | |
ck, cv = cache.cached_kv | |
if exists(mem): | |
mk, k = unpack(k, mem_packed_shape, 'b h * d') | |
mv, v = unpack(v, mem_packed_shape, 'b h * d') | |
k = torch.cat((ck, k), dim = -2) | |
v = torch.cat((cv, v), dim = -2) | |
if exists(mem): | |
k = torch.cat((mk, k), dim = -2) | |
v = torch.cat((mv, v), dim = -2) | |
if return_intermediates: | |
mem_len = mem.shape[-2] if exists(mem) else 0 | |
cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :]) | |
if self.qk_norm: | |
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups) | |
q, k = map(qk_l2norm, (q, k)) | |
scale = self.qk_norm_scale | |
q = q * self.qk_norm_q_scale | |
k = k * self.qk_norm_k_scale | |
if exists(rotary_pos_emb) and not has_context: | |
freqs, xpos_scale = rotary_pos_emb | |
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.) | |
q = apply_rotary_pos_emb(q, freqs, q_xpos_scale) | |
k = apply_rotary_pos_emb(k, freqs, k_xpos_scale) | |
if self.rotary_embed_values: | |
v = apply_rotary_pos_emb(v, freqs, k_xpos_scale) | |
input_mask = context_mask | |
if not exists(input_mask) and not has_context: | |
input_mask = mask | |
if self.num_mem_kv > 0: | |
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v)) | |
if self.qk_norm: | |
mem_k = l2norm(mem_k) | |
mem_k = mem_k * self.qk_norm_k_scale | |
k = torch.cat((mem_k, k), dim = -2) | |
v = torch.cat((mem_v, v), dim = -2) | |
if exists(input_mask): | |
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True) | |
i, j = map(lambda t: t.shape[-2], (q, k)) | |
# determine masking | |
mask_value = max_neg_value(q) | |
masks = [] | |
final_attn_mask = None | |
if exists(input_mask): | |
input_mask = rearrange(input_mask, 'b j -> b 1 1 j') | |
masks.append(~input_mask) | |
if exists(attn_mask): | |
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4' | |
if attn_mask.ndim == 2: | |
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j') | |
elif attn_mask.ndim == 3: | |
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j') | |
masks.append(~attn_mask) | |
if exists(self.max_attend_past): | |
range_q = torch.arange(j - i, j, device = device) | |
range_k = torch.arange(j, device = device) | |
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j') | |
max_attend_past_mask = dist > self.max_attend_past | |
masks.append(max_attend_past_mask) | |
if len(masks) > 0: | |
final_attn_mask = ~or_reduce(masks) | |
# prepare relative positional bias, if needed | |
attn_bias = None | |
if exists(rel_pos): | |
attn_bias = rel_pos(i, j) | |
# attention is all we need | |
out, intermediates = self.attend( | |
q, k, v, | |
mask = final_attn_mask, | |
attn_bias = attn_bias, | |
prev_attn = prev_attn | |
) | |
# https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients | |
if exists(r): | |
out = out * r + out | |
# normformer scaling of heads | |
if head_scale: | |
out = out * self.head_scale_params | |
# per head gating, from https://arxiv.org/abs/2306.12929 | |
if exists(self.to_v_head_gate): | |
head_gate = self.to_v_head_gate(x) | |
out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid() | |
# merge heads | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
# alphafold2 styled gating of the values | |
if exists(self.to_v_gate): | |
gates = self.to_v_gate(x) | |
out = out * gates.sigmoid() | |
# combine the heads | |
out = self.to_out(out) | |
if exists(mask): | |
mask = rearrange(mask, 'b n -> b n 1') | |
out = out.masked_fill(~mask, 0.) | |
if not return_intermediates: | |
return out | |
intermediates.cached_kv = cached_kv | |
return out, intermediates | |
class AttentionLayers(nn.Module): | |
def __init__( | |
self, | |
dim, | |
depth, | |
heads = 8, | |
causal = False, | |
cross_attend = False, | |
only_cross = False, | |
use_scalenorm = False, | |
use_rmsnorm = False, | |
use_simple_rmsnorm = False, | |
alibi_pos_bias = False, | |
alibi_num_heads = None, | |
rel_pos_bias = False, | |
rel_pos_num_buckets = 32, | |
rel_pos_max_distance = 128, | |
dynamic_pos_bias = False, | |
dynamic_pos_bias_log_distance = False, | |
dynamic_pos_bias_mlp_depth = 2, | |
dynamic_pos_bias_norm = False, | |
rotary_pos_emb = False, | |
rotary_emb_dim = None, | |
rotary_xpos = False, | |
rotary_interpolation_factor = 1., | |
rotary_xpos_scale_base = 512, | |
rotary_base_rescale_factor = 1., | |
custom_layers = None, | |
sandwich_coef = None, | |
par_ratio = None, | |
weight_tie_layers = False, # Albert - https://arxiv.org/abs/1909.11942 | |
layers_execute_order = None, # generalizes weight tying, can do arbitrary layer execution orders | |
residual_attn = False, | |
cross_residual_attn = False, | |
macaron = False, | |
pre_norm = True, | |
pre_norm_has_final_norm = True, | |
gate_residual = False, | |
scale_residual = False, | |
scale_residual_constant = 1., | |
shift_tokens = 0, | |
sandwich_norm = False, | |
resi_dual = False, | |
resi_dual_scale = 1., | |
zero_init_branch_output = False, | |
layer_dropout = 0., | |
cross_attn_tokens_dropout = 0., | |
**kwargs | |
): | |
super().__init__() | |
rotary_pos_emb = rotary_pos_emb or rotary_xpos | |
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) | |
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs) | |
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) | |
self.dim = dim | |
self.depth = depth | |
self.causal = causal | |
self.layers = nn.ModuleList([]) | |
self.has_pos_emb = rel_pos_bias or rotary_pos_emb | |
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32) | |
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention' | |
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None | |
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both' | |
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' | |
# relative positional bias | |
flash_attn = attn_kwargs.get('flash', False) | |
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias' | |
self.rel_pos = None | |
if rel_pos_bias: | |
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias' | |
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance) | |
elif dynamic_pos_bias: | |
assert not flash_attn, 'flash attention not compatible with dynamic positional bias' | |
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm) | |
elif alibi_pos_bias: | |
alibi_num_heads = default(alibi_num_heads, heads) | |
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads' | |
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads) | |
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both' | |
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm' | |
if resi_dual: | |
pre_norm = False | |
self.pre_norm = pre_norm | |
self.sandwich_norm = sandwich_norm | |
self.resi_dual = resi_dual | |
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.' | |
self.resi_dual_scale = resi_dual_scale | |
self.residual_attn = residual_attn | |
self.cross_residual_attn = cross_residual_attn | |
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention' | |
self.cross_attend = cross_attend | |
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm' | |
if use_scalenorm: | |
norm_class = ScaleNorm | |
elif use_rmsnorm: | |
norm_class = RMSNorm | |
elif use_simple_rmsnorm: | |
norm_class = SimpleRMSNorm | |
else: | |
norm_class = nn.LayerNorm | |
norm_fn = partial(norm_class, dim) | |
if cross_attend and not only_cross: | |
default_block = ('a', 'c', 'f') | |
elif cross_attend and only_cross: | |
default_block = ('c', 'f') | |
else: | |
default_block = ('a', 'f') | |
if macaron: | |
default_block = ('f',) + default_block | |
# zero init | |
if zero_init_branch_output: | |
attn_kwargs = {**attn_kwargs, 'zero_init_output': True} | |
ff_kwargs = {**ff_kwargs, 'zero_init_output': True} | |
# setup weight tying, which is a special case of `layer_execute_order` | |
assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))])) | |
if weight_tie_layers: | |
assert not exists(layers_execute_order) | |
layers_execute_order = tuple(range(len(default_block))) * depth | |
depth = 1 | |
# calculate layer block order | |
if exists(custom_layers): | |
layer_types = custom_layers | |
elif exists(par_ratio): | |
par_depth = depth * len(default_block) | |
assert 1 < par_ratio <= par_depth, 'par ratio out of range' | |
default_block = tuple(filter(not_equals('f'), default_block)) | |
par_attn = par_depth // par_ratio | |
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper | |
par_width = (depth_cut + depth_cut // par_attn) // par_attn | |
assert len(default_block) <= par_width, 'default block is too large for par_ratio' | |
par_block = default_block + ('f',) * (par_width - len(default_block)) | |
par_head = par_block * par_attn | |
layer_types = par_head + ('f',) * (par_depth - len(par_head)) | |
elif exists(sandwich_coef): | |
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' | |
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef | |
else: | |
layer_types = default_block * depth | |
self.layer_types = layer_types | |
self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types)))) | |
assert all([i < len(self.layer_types) for i in self.layers_execute_order]) | |
self.num_attn_layers = len(list(filter(equals('a'), layer_types))) | |
# stochastic depth | |
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types)) | |
# structured dropout for cross attending | |
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout | |
# calculate token shifting | |
shift_tokens = cast_tuple(shift_tokens, len(layer_types)) | |
# whether it has post norm | |
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity() | |
# iterate and construct layers | |
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)): | |
is_last_layer = ind == (len(self.layer_types) - 1) | |
if layer_type == 'a': | |
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs) | |
elif layer_type == 'c': | |
layer = Attention(dim, heads = heads, **attn_kwargs) | |
elif layer_type == 'f': | |
layer = FeedForward(dim, **ff_kwargs) | |
layer = layer if not macaron else Scale(0.5, layer) | |
else: | |
raise Exception(f'invalid layer type {layer_type}') | |
if layer_shift_tokens > 0: | |
shift_range_upper = layer_shift_tokens + 1 | |
shift_range_lower = -layer_shift_tokens if not causal else 0 | |
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer) | |
residual_fn = GRUGating if gate_residual else Residual | |
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant) | |
pre_branch_norm = norm_fn() if pre_norm else None | |
post_branch_norm = norm_fn() if sandwich_norm else None | |
post_main_norm = norm_fn() if not pre_norm else None | |
norms = nn.ModuleList([ | |
pre_branch_norm, | |
post_branch_norm, | |
post_main_norm | |
]) | |
self.layers.append(nn.ModuleList([ | |
norms, | |
layer, | |
residual | |
])) | |
def forward( | |
self, | |
x, | |
context = None, | |
mask = None, | |
context_mask = None, | |
attn_mask = None, | |
self_attn_kv_mask = None, | |
mems = None, | |
seq_start_pos: Optional[Tensor] = None, | |
cache: Optional[LayerIntermediates] = None, | |
cache_age = 1, | |
return_hiddens = False | |
): | |
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True' | |
# initialize accums | |
hiddens = [] | |
layer_hiddens = [] | |
intermediates = [] | |
prev_attn = None | |
prev_cross_attn = None | |
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers | |
# handle left padded sequences | |
if exists(seq_start_pos): | |
seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long) | |
left_pad_mask = seq_arange >= seq_start_pos[..., None] | |
if exists(self_attn_kv_mask): | |
self_attn_kv_mask = self_attn_kv_mask & left_pad_mask | |
else: | |
self_attn_kv_mask = left_pad_mask | |
# rotary positions | |
rotary_pos_emb = None | |
if exists(self.rotary_pos_emb): | |
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems))) | |
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length) | |
# assume cached key / values | |
attn_cache = [] | |
if exists(cache): | |
assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))]) | |
if cache_age > 0: | |
x = x[:, -cache_age:] # for spec decoding, may be greater than 1 | |
attn_cache = cache.attn_intermediates | |
iter_attn_cache = iter(attn_cache) | |
# outer residual - for resiDual paper | |
outer_residual = x * self.resi_dual_scale | |
# get layers to be executed | |
layer_variables = ( | |
self.layer_types, | |
self.layers, | |
self.layer_dropouts | |
) | |
layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables) | |
# go through the attention and feedforward layers | |
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)): | |
is_last = ind == (len(self.layers) - 1) | |
if self.training and layer_dropout > 0. and random() < layer_dropout: | |
continue | |
if layer_type == 'a': | |
if return_hiddens: | |
hiddens.append(x) | |
layer_mem = mems.pop(0) if mems else None | |
if layer_type == 'c': | |
if self.training and self.cross_attn_tokens_dropout > 0.: | |
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout) | |
inner_residual = x | |
if return_hiddens: | |
layer_hiddens.append(x) | |
pre_norm, post_branch_norm, post_main_norm = norm | |
if exists(pre_norm): | |
x = pre_norm(x) | |
if layer_type == 'a': | |
out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True) | |
elif layer_type == 'c': | |
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True) | |
elif layer_type == 'f': | |
out = block(x) | |
if self.resi_dual: | |
outer_residual = outer_residual + out * self.resi_dual_scale | |
if exists(post_branch_norm): | |
out = post_branch_norm(out) | |
x = residual_fn(out, inner_residual) | |
if layer_type in ('a', 'c') and return_hiddens: | |
intermediates.append(inter) | |
if layer_type == 'a' and self.residual_attn: | |
prev_attn = inter.pre_softmax_attn | |
elif layer_type == 'c' and self.cross_residual_attn: | |
prev_cross_attn = inter.pre_softmax_attn | |
if exists(post_main_norm): | |
x = post_main_norm(x) | |
if return_hiddens: | |
layer_hiddens.append(x) | |
if self.resi_dual: | |
x = x + self.final_norm(outer_residual) | |
else: | |
x = self.final_norm(x) | |
if not return_hiddens: | |
return x | |
intermediates = LayerIntermediates( | |
hiddens = hiddens, | |
attn_intermediates = intermediates, | |
layer_hiddens = layer_hiddens | |
) | |
return x, intermediates | |
class Encoder(AttentionLayers): | |
def __init__(self, **kwargs): | |
assert 'causal' not in kwargs, 'cannot set causality on encoder' | |
super().__init__(causal = False, **kwargs) | |
class Decoder(AttentionLayers): | |
def __init__(self, **kwargs): | |
assert 'causal' not in kwargs, 'cannot set causality on decoder' | |
super().__init__(causal = True, **kwargs) | |
class CrossAttender(AttentionLayers): | |
def __init__(self, **kwargs): | |
super().__init__(cross_attend = True, only_cross = True, **kwargs) | |
class ViTransformerWrapper(nn.Module): | |
def __init__( | |
self, | |
*, | |
image_size, | |
patch_size, | |
attn_layers, | |
channels = 3, | |
num_classes = None, | |
post_emb_norm = False, | |
num_register_tokens = 0, | |
emb_dropout = 0. | |
): | |
super().__init__() | |
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder' | |
assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size' | |
dim = attn_layers.dim | |
num_patches = (image_size // patch_size) ** 2 | |
patch_dim = channels * patch_size ** 2 | |
self.patch_size = patch_size | |
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim)) | |
has_register_tokens = num_register_tokens > 0 | |
self.has_register_tokens = has_register_tokens | |
if has_register_tokens: | |
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim)) | |
self.patch_to_embedding = nn.Sequential( | |
nn.LayerNorm(patch_dim), | |
nn.Linear(patch_dim, dim), | |
nn.LayerNorm(dim) | |
) | |
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() | |
self.dropout = nn.Dropout(emb_dropout) | |
self.attn_layers = attn_layers | |
self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity() | |
def forward( | |
self, | |
img, | |
return_embeddings = False | |
): | |
b, p = img.shape[0], self.patch_size | |
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p) | |
x = self.patch_to_embedding(x) | |
n = x.shape[1] | |
x = x + self.pos_embedding[:, :n] | |
x = self.post_emb_norm(x) | |
x = self.dropout(x) | |
if self.has_register_tokens: | |
r = repeat(self.register_tokens, 'n d -> b n d', b = b) | |
x, ps = pack((x, r), 'b * d') | |
x = self.attn_layers(x) | |
if self.has_register_tokens: | |
x, _ = unpack(x, ps, 'b * d') | |
if not exists(self.mlp_head) or return_embeddings: | |
return x | |
x = x.mean(dim = -2) | |
return self.mlp_head(x) | |
class TransformerWrapper(nn.Module): | |
def __init__( | |
self, | |
*, | |
num_tokens, | |
max_seq_len, | |
attn_layers, | |
emb_dim = None, | |
max_mem_len = 0, | |
shift_mem_down = 0, | |
emb_dropout = 0., | |
post_emb_norm = False, | |
num_memory_tokens = None, | |
memory_tokens_interspersed_every = None, | |
tie_embedding = False, | |
logits_dim = None, | |
use_abs_pos_emb = True, | |
scaled_sinu_pos_emb = False, | |
l2norm_embed = False, | |
emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1 | |
attn_z_loss_weight = 1e-4, | |
): | |
super().__init__() | |
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' | |
dim = attn_layers.dim | |
emb_dim = default(emb_dim, dim) | |
self.emb_dim = emb_dim | |
self.num_tokens = num_tokens | |
self.max_seq_len = max_seq_len | |
self.max_mem_len = max_mem_len | |
self.shift_mem_down = shift_mem_down | |
self.l2norm_embed = l2norm_embed | |
self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed) | |
if not (use_abs_pos_emb and not attn_layers.has_pos_emb): | |
self.pos_emb = always(0) | |
elif scaled_sinu_pos_emb: | |
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim) | |
else: | |
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed) | |
self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290 | |
self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity() | |
self.emb_dropout = nn.Dropout(emb_dropout) | |
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() | |
self.attn_layers = attn_layers | |
self.init_() | |
logits_dim = default(logits_dim, num_tokens) | |
self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t() | |
# memory tokens (like [cls]) from Memory Transformers paper | |
num_memory_tokens = default(num_memory_tokens, 0) | |
self.num_memory_tokens = num_memory_tokens | |
if num_memory_tokens > 0: | |
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) | |
self.memory_tokens_interspersed_every = memory_tokens_interspersed_every | |
# whether can do cached kv decoding | |
self.can_cache_kv = self.num_memory_tokens == 0 | |
def init_(self): | |
if self.l2norm_embed: | |
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5) | |
if not isinstance(self.pos_emb, always): | |
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5) | |
return | |
nn.init.kaiming_normal_(self.token_emb.emb.weight) | |
def forward( | |
self, | |
x, | |
return_embeddings = False, | |
return_logits_and_embeddings = False, | |
return_intermediates = False, | |
mask = None, | |
return_mems = False, | |
return_attn = False, | |
mems = None, | |
pos = None, | |
prepend_embeds = None, | |
sum_embeds = None, | |
return_attn_z_loss = False, | |
attn_z_loss_weight = 1e-4, | |
seq_start_pos = None, | |
cache: Optional[LayerIntermediates] = None, | |
**kwargs | |
): | |
b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient | |
return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss | |
# absolute positional embedding | |
external_pos_emb = exists(pos) and pos.dtype != torch.long | |
pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos | |
x = self.token_emb(x) + pos_emb | |
# for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training | |
if exists(sum_embeds): | |
x = x + sum_embeds | |
# post embedding norm, purportedly leads to greater stabilization | |
x = self.post_emb_norm(x) | |
# whether to append embeds, as in PaLI, for image embeddings | |
if exists(prepend_embeds): | |
prepend_seq, prepend_dim = prepend_embeds.shape[1:] | |
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions' | |
x = torch.cat((prepend_embeds, x), dim = -2) | |
# whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model | |
if emb_frac_gradient < 1: | |
assert emb_frac_gradient > 0 | |
x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient) | |
# embedding dropout | |
x = self.emb_dropout(x) | |
x = self.project_emb(x) | |
if has_memory_tokens: | |
mem_every = self.memory_tokens_interspersed_every | |
if exists(mem_every): | |
assert mem_every > 0 | |
assert isinstance(self.attn_layers, Decoder), 'only for decoder' | |
next_seq_len = math.ceil(n / mem_every) * mem_every | |
x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.) | |
x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every) | |
mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0]) | |
x, mem_packed_shape = pack((mem, x), 'b * d') | |
# auto-handle masking after appending memory tokens | |
if not exists(mem_every) and exists(mask): | |
mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True) | |
if exists(mem_every): | |
x = rearrange(x, '(b n) m d -> b (n m) d', b = b) | |
if self.shift_mem_down and exists(mems): | |
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:] | |
mems = [*mems_r, *mems_l] | |
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs) | |
if has_memory_tokens: | |
if exists(mem_every): | |
x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems)) | |
mem, x = unpack(x, mem_packed_shape, 'b * d') | |
if exists(mem_every): | |
x = rearrange(x, '(b n) m d -> b (n m) d', b = b) | |
x = x[:, :n] | |
if return_logits_and_embeddings: | |
out = (self.to_logits(x), x) | |
elif return_embeddings: | |
out = x | |
else: | |
out = self.to_logits(x) | |
if return_attn_z_loss: | |
pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates)) | |
intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight) | |
return_intermediates = True | |
if return_mems: | |
hiddens = intermediates.hiddens | |
new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens | |
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) | |
if not return_intermediates: | |
return out, new_mems | |
intermediates.mems = new_mems | |
if return_intermediates: | |
return out, intermediates | |
if return_attn: | |
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) | |
return out, attn_maps | |
return out | |
class ContinuousTransformerWrapper(nn.Module): | |
def __init__( | |
self, | |
*, | |
max_seq_len, | |
attn_layers, | |
dim_in = None, | |
dim_out = None, | |
emb_dim = None, | |
max_mem_len = 0, | |
post_emb_norm = False, | |
emb_dropout = 0., | |
use_abs_pos_emb = True, | |
scaled_sinu_pos_emb = False | |
): | |
super().__init__() | |
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' | |
dim = attn_layers.dim | |
self.max_seq_len = max_seq_len | |
self.max_mem_len = max_mem_len | |
if not (use_abs_pos_emb and not attn_layers.has_pos_emb): | |
self.pos_emb = always(0) | |
elif scaled_sinu_pos_emb: | |
self.pos_emb = ScaledSinusoidalEmbedding(dim) | |
else: | |
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len) | |
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity() | |
self.emb_dropout = nn.Dropout(emb_dropout) | |
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity() | |
self.attn_layers = attn_layers | |
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity() | |
def forward( | |
self, | |
x, | |
return_embeddings = False, | |
return_intermediates = False, | |
return_mems = False, | |
mask = None, | |
return_attn = False, | |
mems = None, | |
pos = None, | |
prepend_embeds = None, | |
**kwargs | |
): | |
x = self.project_in(x) | |
x = x + self.pos_emb(x, pos = pos) | |
x = self.post_emb_norm(x) | |
# whether to append embeds, as in PaLI, for image embeddings | |
if exists(prepend_embeds): | |
_, prepend_dim = prepend_embeds.shape[1:] | |
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions' | |
x = torch.cat((prepend_embeds, x), dim = -2) | |
x = self.emb_dropout(x) | |
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs) | |
out = self.project_out(x) if not return_embeddings else x | |
if return_intermediates: | |
return out, intermediates | |
if return_mems: | |
hiddens = intermediates.hiddens | |
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens)) | |
return out, new_mems | |
if return_attn: | |
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) | |
return out, attn_maps | |
return out | |
class XTransformer(nn.Module): | |
def __init__( | |
self, | |
*, | |
dim, | |
tie_token_emb = False, | |
ignore_index = -100, | |
pad_value = 0, | |
cross_attn_tokens_dropout = 0., | |
**kwargs | |
): | |
super().__init__() | |
enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs) | |
dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs) | |
assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword' | |
enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs) | |
enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0) | |
enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None) | |
enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False) | |
enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True) | |
dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs) | |
dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0) | |
dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False) | |
dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True) | |
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories | |
self.encoder = TransformerWrapper( | |
**enc_transformer_kwargs, | |
attn_layers = Encoder(dim = dim, **enc_kwargs) | |
) | |
self.decoder = TransformerWrapper( | |
**dec_transformer_kwargs, | |
attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs) | |
) | |
if tie_token_emb: | |
self.decoder.token_emb = self.encoder.token_emb | |
self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value) | |
def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs): | |
encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True) | |
return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs) | |
def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None): | |
if exists(src_prepend_embeds) and exists(mask): | |
mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True) | |
enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True) | |
if self.training and self.cross_attn_tokens_dropout > 0: | |
enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout) | |
out = self.decoder(tgt, context = enc, context_mask = mask) | |
return out | |