File size: 10,550 Bytes
c9d9ce3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
# -*- coding: utf-8 -*-
"""Melody2Song_Seq2Seq_Music_Transformer.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1La3iHCib9tluuv4AfsIHCwt1zu0wzl8B
# Melody2Song Seq2Seq Music Transformer (ver. 1.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
***
#### Project Los Angeles
#### Tegridy Code 2024
***
# (GPU CHECK)
"""
# @title NVIDIA GPU Check
!nvidia-smi
"""# (SETUP ENVIRONMENT)"""
# @title Install requirements
!git clone --depth 1 https://github.com/asigalov61/tegridy-tools
!pip install einops
!pip install torch-summary
!apt install fluidsynth
# Commented out IPython magic to ensure Python compatibility.
# @title Load all needed modules
print('=' * 70)
print('Loading needed modules...')
print('=' * 70)
import os
import pickle
import random
import secrets
import tqdm
import math
import torch
import matplotlib.pyplot as plt
from torchsummary import summary
# %cd /content/tegridy-tools/tegridy-tools/
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
# %cd /content/tegridy-tools/tegridy-tools/X-Transformer
from x_transformer_1_23_2 import *
# %cd /content/
import random
from sklearn import metrics
from IPython.display import Audio, display
from huggingface_hub import hf_hub_download
from google.colab import files
print('=' * 70)
print('Done')
print('=' * 70)
print('Torch version:', torch.__version__)
print('=' * 70)
print('Enjoy! :)')
print('=' * 70)
"""# (SETUP DATA AND MODEL)"""
#@title Load Melody2Song Seq2Seq Music Trnasofmer Data and Pre-Trained Model
#@markdown Model precision option
model_precision = "bfloat16" # @param ["bfloat16", "float16"]
plot_tokens_embeddings = True # @param {type:"boolean"}
print('=' * 70)
print('Donwloading Melody2Song Seq2Seq Music Transformer Data File...')
print('=' * 70)
data_path = '/content'
if os.path.isfile(data_path+'/Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data.pickle'):
print('Data file already exists...')
else:
hf_hub_download(repo_id='asigalov61/Melody2Song-Seq2Seq-Music-Transformer',
repo_type='space',
filename='Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data.pickle',
local_dir=data_path,
)
print('=' * 70)
seed_melodies_data = TMIDIX.Tegridy_Any_Pickle_File_Reader('Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data')
print('=' * 70)
print('Loading Melody2Song Seq2Seq Music Transformer Pre-Trained Model...')
print('Please wait...')
print('=' * 70)
full_path_to_models_dir = "/content"
model_checkpoint_file_name = 'Melody2Song_Seq2Seq_Music_Transformer_Trained_Model_28482_steps_0.719_loss_0.7865_acc.pth'
model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name
num_layers = 24
if os.path.isfile(model_path):
print('Model already exists...')
else:
hf_hub_download(repo_id='asigalov61/Melody2Song-Seq2Seq-Music-Transformer',
repo_type='space',
filename=model_checkpoint_file_name,
local_dir=full_path_to_models_dir,
)
print('=' * 70)
print('Instantiating model...')
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
device_type = 'cuda'
if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
dtype = 'bfloat16'
else:
dtype = 'float16'
if model_precision == 'float16':
dtype = 'float16'
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 2560
PAD_IDX = 514
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
model.cuda()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(torch.load(model_path))
print('=' * 70)
model.eval()
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
# Model stats
print('Model summary...')
summary(model)
if plot_tokens_embeddings:
tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()
cos_sim = metrics.pairwise_distances(
tok_emb, metric='cosine'
)
plt.figure(figsize=(7, 7))
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
plt.savefig("/content/Melody2Song-Seq2Seq-Music-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
"""# (LOAD SEED MELODY)"""
# @title Load desired seed melody
#@markdown NOTE: If custom MIDI file is not provided, sample seed melody will be used instead
full_path_to_custom_seed_melody_MIDI_file = "/content/tegridy-tools/tegridy-tools/seed-melody.mid" # @param {type:"string"}
sample_seed_melody_number = 0 # @param {type:"slider", min:0, max:203664, step:1}
print('=' * 70)
print('Loading seed melody...')
print('=' * 70)
if full_path_to_custom_seed_melody_MIDI_file != '':
#===============================================================================
# Raw single-track ms score
raw_score = TMIDIX.midi2single_track_ms_score(full_path_to_custom_seed_melody_MIDI_file)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#===============================================================================
# Augmented enhanced score notes
escore_notes = TMIDIX.recalculate_score_timings(TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32))
cscore = TMIDIX.chordify_score([1000, escore_notes])
fixed_mel_score = TMIDIX.fix_monophonic_score_durations([c[0] for c in cscore])
melody = []
pe = fixed_mel_score[0]
for s in fixed_mel_score:
dtime = max(0, min(127, s[1]-pe[1]))
dur = max(1, min(127, s[2]))
ptc = max(1, min(127, s[4]))
chan = 1
melody.extend([dtime, dur+128, (128 * chan)+ptc+256])
pe = s
if len(melody) >= 192:
melody = [512] + melody[:192] + [513]
else:
mult = math.ceil(192 / len(melody))
melody = melody * mult
melody = [512] + melody[:192] + [513]
print('Loaded custom MIDI melody:', full_path_to_custom_seed_melody_MIDI_file)
print('=' * 70)
else:
melody = seed_melodies_data[sample_seed_melody_number]
print('Loaded sample seed melody #', sample_seed_melody_number)
print('=' * 70)
print('Sample melody INTs:', melody[:10])
print('=' * 70)
print('Done!')
print('=' * 70)
"""# (GENERATE)"""
# @title Generate song from melody
melody_MIDI_patch_number = 40 # @param {type:"slider", min:0, max:127, step:1}
accompaniment_MIDI_patch_number = 0 # @param {type:"slider", min:0, max:127, step:1}
number_of_tokens_to_generate = 900 # @param {type:"slider", min:15, max:2354, step:3}
number_of_batches_to_generate = 4 # @param {type:"slider", min:1, max:16, step:1}
top_k_value = 25 # @param {type:"slider", min:1, max:50, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
render_MIDI_to_audio = True # @param {type:"boolean"}
print('=' * 70)
print('Melody2Song Seq1Seq Music Transformer Model Generator')
print('=' * 70)
print('Generating...')
print('=' * 70)
model.eval()
torch.cuda.empty_cache()
x = (torch.tensor([melody] * number_of_batches_to_generate, dtype=torch.long, device='cuda'))
with ctx:
out = model.generate(x,
number_of_tokens_to_generate,
filter_logits_fn=top_k,
filter_kwargs={'k': top_k_value},
temperature=0.9,
return_prime=False,
verbose=True)
output = out.tolist()
print('=' * 70)
print('Done!')
print('=' * 70)
#======================================================================
print('Rendering results...')
for i in range(number_of_batches_to_generate):
print('=' * 70)
print('Batch #', i)
print('=' * 70)
out1 = output[i]
print('Sample INTs', out1[:12])
print('=' * 70)
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [0] * 16
patches[0] = accompaniment_MIDI_patch_number
patches[3] = melody_MIDI_patch_number
for ss in song:
if 0 < ss < 128:
time += (ss * 32)
if 128 < ss < 256:
dur = (ss-128) * 32
if 256 < ss < 512:
pitch = (ss-256) % 128
channel = (ss-256) // 128
if channel == 1:
channel = 3
vel = 110 + (pitch % 12)
song_f.append(['note', time, dur, channel, pitch, vel, melody_MIDI_patch_number])
else:
vel = 80 + (pitch % 12)
channel = 0
song_f.append(['note', time, dur, channel, pitch, vel, accompaniment_MIDI_patch_number])
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Melody2Song Seq2Seq Music Transformer',
output_file_name = '/content/Melody2Song-Seq2Seq-Music-Transformer-Composition_'+str(i),
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Melody2Song-Seq2Seq-Music-Transformer-Composition_'+str(i)
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
"""# Congrats! You did it! :)""" |