asigalov61's picture
Update app.py
0e99ce0 verified
raw
history blame
12 kB
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateAccompaniment(input_midi, input_num_tokens, input_conditioning_type, input_strip_notes):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 707 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Chords_Progressions_Transformer_Small_2048_Trained_Model_12947_steps_0.9316_loss_0.7386_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.float16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
input_num_tokens = max(4, min(128, input_num_tokens))
print('-' * 70)
print('Input file name:', fn)
print('Req num toks:', input_num_tokens)
print('Conditioning type:', input_conditioning_type)
print('Strip notes:', input_strip_notes)
print('-' * 70)
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
no_drums_escore_notes = [e for e in escore_notes if e[6] < 80]
if len(no_drums_escore_notes) > 0:
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
no_drums_escore_notes = TMIDIX.augment_enhanced_score_notes(no_drums_escore_notes)
cscore = TMIDIX.chordify_score([1000, no_drums_escore_notes])
clean_cscore = []
for c in cscore:
pitches = []
cho = []
for cc in c:
if cc[4] not in pitches:
cho.append(cc)
pitches.append(cc[4])
clean_cscore.append(cho)
#=======================================================
# FINAL PROCESSING
melody_chords = []
chords = []
times = [0]
durs = []
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
pe = clean_cscore[0][0]
first_chord = True
for c in clean_cscore:
# Chords
c.sort(key=lambda x: x[4], reverse=True)
tones_chord = sorted(set([cc[4] % 12 for cc in c]))
try:
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)
except:
checked_tones_chord = TMIDIX.check_and_fix_tones_chord(tones_chord)
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(checked_tones_chord)
melody_chords.extend([chord_token+384])
if input_strip_notes:
if len(tones_chord) > 1:
chords.extend([chord_token+384])
else:
chords.extend([chord_token+384])
if first_chord:
melody_chords.extend([0])
first_chord = False
for e in c:
#=======================================================
# Timings...
time = e[1]-pe[1]
dur = e[2]
if time != 0 and time % 2 != 0:
time += 1
if dur % 2 != 0:
dur += 1
delta_time = int(max(0, min(255, time)) / 2)
# Durations
dur = int(max(0, min(255, dur)) / 2)
# Pitches
ptc = max(1, min(127, e[4]))
#=======================================================
# FINAL NOTE SEQ
# Writing final note asynchronously
if delta_time != 0:
melody_chords.extend([delta_time, dur+128, ptc+256])
if input_strip_notes:
if len(c) > 1:
times.append(delta_time)
durs.append(dur+128)
else:
times.append(delta_time)
durs.append(dur+128)
else:
melody_chords.extend([dur+128, ptc+256])
pe = e
#==================================================================
print('=' * 70)
print('Sample output events', melody_chords[:5])
print('=' * 70)
print('Generating...')
output = []
max_chords_limit = 8
temperature=0.9
num_memory_tokens=4096
output = []
idx = 0
for c in chords[:input_num_tokens]:
output.append(c)
if input_conditioning_type == 'Chords-Times' or input_conditioning_type == 'Chords-Times-Durations':
output.append(times[idx])
if input_conditioning_type == 'Chords-Times-Durations':
output.append(durs[idx])
x = torch.tensor([output] * 1, dtype=torch.long, device='cuda')
o = 0
ncount = 0
while o < 384 and ncount < max_chords_limit:
with ctx:
out = model.generate(x[-num_memory_tokens:],
1,
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if 256 <= o < 384:
ncount += 1
if o < 384:
x = torch.cat((x, out), 1)
outy = x.tolist()[0][len(output):]
output.extend(outy)
idx += 1
if idx == len(chords[:input_num_tokens])-1:
break
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', output[:12])
print('=' * 70)
out1 = output
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [0] * 16
channel = 0
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 <= ss < 256:
dur = (ss-128) * 32
if 256 <= ss < 384:
pitch = (ss-256)
vel = max(40, pitch)
song_f.append(['note', time, dur, channel, pitch, vel, 0])
fn1 = "Chords-Progressions-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Chords Progressions Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', '')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Melody2Song Seq2Seq Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique songs from melodies with se2seq music transformer</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Melody2Song-Seq2Seq-Music-Transformer&style=flat)\n\n")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate progression for")
input_conditioning_type = gr.Radio(["Chords", "Chords-Times", "Chords-Times-Durations"], label="Conditioning type")
input_strip_notes = gr.Checkbox(label="Strip notes from the composition")
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_conditioning_type, input_strip_notes],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch()