File size: 14,512 Bytes
9d6df26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65d99ea
9d6df26
 
 
 
 
 
 
65d99ea
9d6df26
 
 
 
 
 
 
65d99ea
9d6df26
 
 
 
 
 
 
 
 
 
65d99ea
9d6df26
 
 
 
 
 
 
 
65d99ea
9d6df26
 
 
 
 
 
 
 
 
65d99ea
9d6df26
 
 
65d99ea
 
9d6df26
 
 
 
 
 
 
 
65d99ea
9d6df26
65d99ea
 
9d6df26
65d99ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6df26
 
 
 
 
65d99ea
 
9d6df26
 
 
 
28d2673
9d6df26
28d2673
9d6df26
28d2673
9d6df26
28d2673
9d6df26
28d2673
9d6df26
28d2673
 
45a3f32
 
28d2673
2172aec
28d2673
 
 
 
0d3141e
 
28d2673
c83e4ca
d84f99c
 
 
0d3141e
 
 
 
 
 
 
28d2673
 
 
 
 
0d3141e
28d2673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6df26
 
 
 
 
 
 
 
 
28d2673
9d6df26
 
28d2673
9d6df26
28d2673
9d6df26
 
 
 
 
 
 
28d2673
 
 
 
 
 
9d6df26
 
28d2673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d6df26
28d2673
9d6df26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
199eaca
9d6df26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28d2673
 
9d6df26
28d2673
 
 
9d6df26
28d2673
 
9d6df26
 
 
 
65d99ea
 
9d6df26
 
 
 
 
 
 
 
 
 
 
 
65d99ea
9d6df26
 
 
199eaca
 
 
 
 
 
a1cfa89
 
 
 
 
 
9d6df26
199eaca
9d6df26
199eaca
9d6df26
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import os.path

import time as reqtime
import datetime
from pytz import timezone

import torch

import spaces
import gradio as gr

from x_transformer_1_23_2 import *
import random
import tqdm

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt

in_space = os.getenv("SYSTEM") == "spaces"
         
# =================================================================================================
                       
@spaces.GPU
def InpaintPitches(input_midi, input_num_of_notes, input_patch_number):
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()

    print('Loading model...')

    SEQ_LEN = 8192 # Models seq len
    PAD_IDX = 19463 # Models pad index
    DEVICE = 'cuda' # 'cuda'

    # instantiate the model

    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True)
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)

    model.to(DEVICE)
    print('=' * 70)

    print('Loading model checkpoint...')

    model.load_state_dict(
        torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth',
                   map_location=DEVICE))
    print('=' * 70)

    model.eval()

    if DEVICE == 'cpu':
        dtype = torch.bfloat16
    else:
        dtype = torch.bfloat16

    ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)

    print('Done!')
    print('=' * 70)

    fn = os.path.basename(input_midi.name)
    fn1 = fn.split('.')[0]

    input_num_of_notes = max(8, min(2048, input_num_of_notes))

    print('-' * 70)
    print('Input file name:', fn)
    print('Req num of notes:', input_num_of_notes)
    print('Req patch number:', input_patch_number)
    print('-' * 70)

    #===============================================================================
    raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
    
    #===============================================================================
    # Enhanced score notes
    
    events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
    
    #=======================================================
    # PRE-PROCESSING
    
    # checking number of instruments in a composition
    instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9]))
    instruments_list = list(set([y[3] for y in events_matrix1]))
    
    if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0:
    
      #======================================
    
      events_matrix2 = []
    
      # Recalculating timings
      for e in events_matrix1:
    
          # Original timings
          e[1] = int(e[1] / 16)
          e[2] = int(e[2] / 16)
    
      #===================================
      # ORIGINAL COMPOSITION
      #===================================
    
      # Sorting by patch, pitch, then by start-time
    
      events_matrix1.sort(key=lambda x: x[6])
      events_matrix1.sort(key=lambda x: x[4], reverse=True)
      events_matrix1.sort(key=lambda x: x[1])
    
      #=======================================================
      # FINAL PROCESSING
    
      melody_chords = []
      melody_chords2 = []
    
      # Break between compositions / Intro seq
    
      if 9 in instruments_list:
          drums_present = 19331 # Yes
      else:
          drums_present = 19330 # No
    
      if events_matrix1[0][3] != 9:
          pat = events_matrix1[0][6]
      else:
          pat = 128
    
      melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
    
      #=======================================================
      # MAIN PROCESSING CYCLE
      #=======================================================
    
      abs_time = 0
    
      pbar_time = 0
    
      pe = events_matrix1[0]
    
      chords_counter = 1
    
      comp_chords_len = len(list(set([y[1] for y in events_matrix1])))
    
      for e in events_matrix1:
    
          #=======================================================
          # Timings...
    
          # Cliping all values...
          delta_time = max(0, min(255, e[1]-pe[1]))
    
          # Durations and channels
    
          dur = max(0, min(255, e[2]))
          cha = max(0, min(15, e[3]))
    
          # Patches
          if cha == 9: # Drums patch will be == 128
              pat = 128
    
          else:
              pat = e[6]
    
          # Pitches
    
          ptc = max(1, min(127, e[4]))
    
          # Velocities
    
          # Calculating octo-velocity
          vel = max(8, min(127, e[5]))
          velocity = round(vel / 15)-1
    
          #=======================================================
          # FINAL NOTE SEQ
    
          # Writing final note asynchronously
    
          dur_vel = (8 * dur) + velocity
          pat_ptc = (129 * pat) + ptc
    
          melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
          melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
    
          pe = e
    
        
    #==================================================================

    print('=' * 70)
    print('Number of tokens:', len(melody_chords))
    print('Number of notes:', len(melody_chords2))
    print('Sample output events', melody_chords[:5])
    print('=' * 70)
    print('Generating...')

    #@title Pitches/Instruments Inpainting
    
    #@markdown You can stop the inpainting at any time to render partial results
    
    #@markdown Inpainting settings
    
    #@markdown Select MIDI patch present in the composition to inpaint
    
    inpaint_MIDI_patch = input_patch_number
    
    #@markdown Generation settings
    
    number_of_prime_tokens = 30 # @param {type:"slider", min:3, max:8190, step:3}
    number_of_memory_tokens = 1024 # @param {type:"slider", min:3, max:8190, step:3}
    number_of_samples_per_inpainted_note = 1 #@param {type:"slider", min:1, max:16, step:1}
    temperature = 0.9
    
    print('=' * 70)
    print('Giant Music Transformer Inpainting Model Generator')
    print('=' * 70)

    nidx = 0
    
    for i, m in enumerate(melody_chords):
        
        cpatch = (melody_chords[i]-2304) // 129
        
        if 2304 <= melody_chords[i] < 18945 and (cpatch) == inpaint_MIDI_patch:
            nidx += 1

        if nidx == input_num_of_notes:
            nidx = i
            break

    out2 = []
    
    for m in melody_chords[:number_of_prime_tokens]:
      out2.append(m)
    
    for i in range(number_of_prime_tokens, len(melody_chords[:nidx])):
    
        cpatch = (melody_chords[i]-2304) // 129
    
        if 2304 <= melody_chords[i] < 18945 and (cpatch) == inpaint_MIDI_patch:
    
            samples = []
    
            for j in range(number_of_samples_per_inpainted_note):
    
              inp = torch.LongTensor(out2[-number_of_memory_tokens:]).cuda()
    
              with ctx:
                out1 = model.generate(inp,
                                      1,
                                      temperature=temperature,
                                      return_prime=True,
                                      verbose=False)
    
                with torch.no_grad():
                  test_loss, test_acc = model(out1)
    
              samples.append([out1.tolist()[0][-1], test_acc.tolist()])
    
            accs = [y[1] for y in samples]
            max_acc = max(accs)
            max_acc_sample = samples[accs.index(max_acc)][0]
    
            cpitch = (max_acc_sample-2304) % 129
    
            out2.extend([((cpatch * 129) + cpitch)+2304])
    
        else:
            out2.append(melody_chords[i])

    print('=' * 70)
    print('Done!')
    print('=' * 70)
    
    #===============================================================================
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', out2[:12])
    print('=' * 70)
    
    if len(out2) != 0:
    
        song = out2
        song_f = []
    
        time = 0
        dur = 0
        vel = 90
        pitch = 0
        channel = 0
    
        patches = [-1] * 16
    
        channels = [0] * 16
        channels[9] = 1
    
        for ss in song:
    
            if 0 <= ss < 256:
    
                time += ss * 16
    
            if 256 <= ss < 2304:
    
                dur = ((ss-256) // 8) * 16
                vel = (((ss-256) % 8)+1) * 15
    
            if 2304 <= ss < 18945:
    
                patch = (ss-2304) // 129
    
                if patch < 128:
    
                    if patch not in patches:
                      if 0 in channels:
                          cha = channels.index(0)
                          channels[cha] = 1
                      else:
                          cha = 15
    
                      patches[cha] = patch
                      channel = patches.index(patch)
                    else:
                      channel = patches.index(patch)
    
                if patch == 128:
                    channel = 9
    
                pitch = (ss-2304) % 129
    
                song_f.append(['note', time, dur, channel, pitch, vel, patch ])

    patches = [0 if x==-1 else x for x in patches]
   
    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Giant Music Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles',
                                                              list_of_MIDI_patches=patches
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi_summary = str(song_f[:3])
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', output_midi_summary)
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
   
    app = gr.Blocks()
    with app:
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Inpaint Music Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Inpaint pitches in any MIDI</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Inpaint-Music-Transformer&style=flat)\n\n"
            "This is a demo of the Giant Music Transformer pitches inpainting feature\n\n"
            "Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n"
            "[Open In Colab]"
            "(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)"
            " for all features, faster execution and endless generation"
        )
        gr.Markdown("## Upload your MIDI or select a sample example MIDI")
        
        input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
        input_num_of_notes = gr.Slider(8, 2048, value=128, step=8, label="Number of composition notes to inpaint")
        input_patch_number = gr.Slider(0, 127, value=0, step=1, label="Composition MIDI patch to inpaint")
        
        run_btn = gr.Button("generate", variant="primary")

        gr.Markdown("## Generation results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])


        run_event = run_btn.click(InpaintPitches, [input_midi, input_num_of_notes, input_patch_number],
                                  [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])

        gr.Examples(
            [["Giant-Music-Transformer-Piano-Seed-1.mid", 128, 0], 
             ["Giant-Music-Transformer-Piano-Seed-2.mid", 128, 0], 
             ["Giant-Music-Transformer-Piano-Seed-3.mid", 128, 0],
             ["Giant-Music-Transformer-Piano-Seed-4.mid", 128, 0],
             ["Giant-Music-Transformer-Piano-Seed-5.mid", 128, 0],
             ["Giant-Music-Transformer-Piano-Seed-6.mid", 128, 0],
             ["Giant-Music-Transformer-MI-Seed-1.mid", 128, 71],
             ["Giant-Music-Transformer-MI-Seed-2.mid", 128, 40],
             ["Giant-Music-Transformer-MI-Seed-3.mid", 128, 40],
             ["Giant-Music-Transformer-MI-Seed-4.mid", 128, 40],
             ["Giant-Music-Transformer-MI-Seed-5.mid", 128, 40],
             ["Giant-Music-Transformer-MI-Seed-6.mid", 128, 0]
            ],
            [input_midi, input_num_of_notes, input_patch_number],
            [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
            InpaintPitches,
            cache_examples=True,
        )
        
        app.queue().launch()