asigalov61's picture
Update app.py
1f361d5 verified
raw
history blame
17.6 kB
# https://huggingface.co/spaces/asigalov61/Intelligent-MIDI-Comparator
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import numpy as np
from scipy.interpolate import make_interp_spline
import matplotlib.pyplot as plt
from sklearn.metrics import pairwise
# =================================================================================================
def hsv_to_rgb(h, s, v):
if s == 0.0:
return v, v, v
i = int(h*6.0)
f = (h*6.0) - i
p = v*(1.0 - s)
q = v*(1.0 - s*f)
t = v*(1.0 - s*(1.0-f))
i = i%6
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i]
def generate_colors(n):
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)]
def add_arrays(a, b):
return [sum(pair) for pair in zip(a, b)]
def plot_ms_SONG(ms_song,
preview_length_in_notes=0,
block_lines_times_list = None,
plot_title='ms Song',
max_num_colors=129,
drums_color_num=128,
plot_size=(11,4),
note_height = 0.75,
show_grid_lines=False,
return_plt = False,
timings_multiplier=1,
plot_curve_values=None,
save_plot=''
):
'''Tegridy ms SONG plotter/vizualizer'''
notes = [s for s in ms_song if s[0] == 'note']
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7):
print('The song notes do not have patches information')
print('Please add patches to the notes in the song')
else:
start_times = [(s[1] * timings_multiplier) / 1000 for s in notes]
durations = [(s[2] * timings_multiplier) / 1000 for s in notes]
pitches = [s[4] for s in notes]
patches = [s[6] for s in notes]
colors = generate_colors(max_num_colors)
colors[drums_color_num] = (1, 1, 1)
pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000
fig, ax = plt.subplots(figsize=plot_size)
# Create a rectangle for each note with color based on patch number
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches):
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch])
ax.add_patch(rect)
if plot_curve_values is not None:
min_val = min(plot_curve_values)
max_val = max(plot_curve_values)
spcva = [((value - min_val) / (max_val - min_val)) * 100 for value in plot_curve_values]
mult = int(math.ceil(max(add_arrays(start_times, durations)) / len(spcva)))
pcv = [value for value in spcva for _ in range(mult)][:int(max(add_arrays(start_times, durations)))+mult]
x = np.arange(len(pcv))
x_smooth = np.linspace(x.min(), x.max(), 300)
spl = make_interp_spline(x, pcv, k=3)
y_smooth = spl(x_smooth)
ax.plot(x_smooth, y_smooth, color='white')
# Set the limits of the plot
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))])
ax.set_ylim([min(y_smooth), max(y_smooth)])
# Set the background color to black
ax.set_facecolor('black')
fig.patch.set_facecolor('white')
if preview_length_in_notes > 0:
ax.axvline(x=pbl, c='white')
if block_lines_times_list:
for bl in block_lines_times_list:
ax.axvline(x=bl, c='white')
if show_grid_lines:
ax.grid(color='white')
plt.xlabel('Time (s)', c='black')
plt.ylabel('MIDI Pitch', c='black')
plt.title(plot_title)
if return_plt:
return fig
if save_plot == '':
plt.show()
else:
plt.savefig(save_plot)
# =================================================================================================
def read_MIDI(input_midi):
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
#===============================================================================
# Enhanced score notes
events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
#=======================================================
# PRE-PROCESSING
instruments_list = list(set([y[3] for y in events_matrix1]))
#======================================
events_matrix1 = TMIDIX.augment_enhanced_score_notes(events_matrix1, timings_divider=16)
#=======================================================
# FINAL PROCESSING
melody_chords = []
melody_chords2 = []
# Break between compositions / Intro seq
if 9 in instruments_list:
drums_present = 19331 # Yes
else:
drums_present = 19330 # No
if events_matrix1[0][3] != 9:
pat = events_matrix1[0][6]
else:
pat = 128
melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
abs_time = 0
pbar_time = 0
pe = events_matrix1[0]
chords_counter = 1
comp_chords_len = len(list(set([y[1] for y in events_matrix1])))
for e in events_matrix1:
#=======================================================
# Timings...
# Cliping all values...
delta_time = max(0, min(255, e[1]-pe[1]))
# Durations and channels
dur = max(0, min(255, e[2]))
cha = max(0, min(15, e[3]))
# Patches
if cha == 9: # Drums patch will be == 128
pat = 128
else:
pat = e[6]
# Pitches
ptc = max(1, min(127, e[4]))
# Velocities
# Calculating octo-velocity
vel = max(8, min(127, e[5]))
velocity = round(vel / 15)-1
#=======================================================
# FINAL NOTE SEQ
# Writing final note asynchronously
dur_vel = (8 * dur) + velocity
pat_ptc = (129 * pat) + ptc
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304])
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
pe = e
return melody_chords, melody_chords2
# =================================================================================================
@spaces.GPU
def InpaintPitches(input_midi, input_num_of_notes, input_patch_number):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 19463 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
input_num_of_notes = max(8, min(2048, input_num_of_notes))
print('-' * 70)
print('Input file name:', fn)
print('Req num of notes:', input_num_of_notes)
print('Req patch number:', input_patch_number)
print('-' * 70)
#===============================================================================
toekns, notes = read_MIDI(input_midi.name)
#==================================================================
print('=' * 70)
print('Number of tokens:', len(toekns))
print('Number of notes:', len(notes))
print('Sample output events', toekns[:5])
print('=' * 70)
print('Generating...')
temperature = 0.85
print('=' * 70)
print('Giant Music Transformer MIDI Comparator')
print('=' * 70)
#==========================================================================
nidx = 0
first_inote = True
fidx = 0
number_of_prime_tokens = number_of_prime_notes * 3
for i, m in enumerate(melody_chords):
if 2304 <= melody_chords[i] < 18945:
cpatch = (melody_chords[i]-2304) // 129
if cpatch == inpaint_MIDI_patch:
nidx += 1
if first_inote:
fidx += 1
if first_inote and fidx == number_of_prime_notes:
number_of_prime_tokens = i
first_inote = False
if nidx == input_num_of_notes:
break
nidx = i
#==========================================================================
out2 = []
for m in melody_chords[:number_of_prime_tokens]:
out2.append(m)
for i in range(number_of_prime_tokens, len(melody_chords[:nidx])):
cpatch = (melody_chords[i]-2304) // 129
if 2304 <= melody_chords[i] < 18945 and (cpatch) == inpaint_MIDI_patch:
samples = []
for j in range(number_of_samples_per_inpainted_note):
inp = torch.LongTensor(out2[-number_of_memory_tokens:]).cuda()
with ctx:
out1 = model.generate(inp,
1,
temperature=temperature,
return_prime=True,
verbose=False)
with torch.no_grad():
test_loss, test_acc = model(out1)
samples.append([out1.tolist()[0][-1], test_acc.tolist()])
accs = [y[1] for y in samples]
max_acc = max(accs)
max_acc_sample = samples[accs.index(max_acc)][0]
cpitch = (max_acc_sample-2304) % 129
out2.extend([((cpatch * 129) + cpitch)+2304])
else:
out2.append(melody_chords[i])
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', out2[:12])
print('=' * 70)
if len(out2) != 0:
song = out2
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [-1] * 16
channels = [0] * 16
channels[9] = 1
for ss in song:
if 0 <= ss < 256:
time += ss * 16
if 256 <= ss < 2304:
dur = ((ss-256) // 8) * 16
vel = (((ss-256) % 8)+1) * 15
if 2304 <= ss < 18945:
patch = (ss-2304) // 129
if patch < 128:
if patch not in patches:
if 0 in channels:
cha = channels.index(0)
channels[cha] = 1
else:
cha = 15
patches[cha] = patch
channel = patches.index(patch)
else:
channel = patches.index(patch)
if patch == 128:
channel = 9
pitch = (ss-2304) % 129
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
patches = [0 if x==-1 else x for x in patches]
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Giant Music Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent MIDI Comparator</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent comparison of any pair of MIDIs</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Intelligent-MIDI-Comparator&style=flat)\n\n"
"This is a demo for the Giant Music Transformer\n\n"
"Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)"
" for all features, faster execution and endless generation"
)
gr.Markdown("## Upload your MIDIs or select a sample example below")
gr.Markdown("## Upload source MIDI")
input_src_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
gr.Markdown("## Upload target MIDI")
input_trg_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_num_of_notes = gr.Slider(8, 2048, value=128, step=8, label="Number of composition notes to inpaint")
input_patch_number = gr.Slider(0, 127, value=0, step=1, label="Composition MIDI patch to inpaint")
run_btn = gr.Button("inpaint", variant="primary")
gr.Markdown("## Inpainting results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(InpaintPitches, [input_midi, input_num_of_notes, input_patch_number],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Giant-Music-Transformer-Piano-Seed-1.mid", 128, 0],
["Giant-Music-Transformer-Piano-Seed-2.mid", 128, 0],
["Giant-Music-Transformer-Piano-Seed-3.mid", 128, 0],
["Giant-Music-Transformer-Piano-Seed-4.mid", 128, 0],
["Giant-Music-Transformer-Piano-Seed-5.mid", 128, 2],
["Giant-Music-Transformer-Piano-Seed-6.mid", 128, 0],
["Giant-Music-Transformer-MI-Seed-1.mid", 128, 71],
["Giant-Music-Transformer-MI-Seed-2.mid", 128, 40],
["Giant-Music-Transformer-MI-Seed-3.mid", 128, 40],
["Giant-Music-Transformer-MI-Seed-4.mid", 128, 40],
["Giant-Music-Transformer-MI-Seed-5.mid", 128, 40],
["Giant-Music-Transformer-MI-Seed-6.mid", 128, 0]
],
[input_midi, input_num_of_notes, input_patch_number],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
InpaintPitches,
cache_examples=True,
)
app.queue().launch()