Spaces:
Running
on
Zero
Running
on
Zero
asigalov61
commited on
Commit
•
b2efcdc
1
Parent(s):
be28b0f
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# https://huggingface.co/spaces/asigalov61/
|
2 |
|
3 |
import os.path
|
4 |
|
@@ -21,64 +21,11 @@ import TMIDIX
|
|
21 |
import matplotlib.pyplot as plt
|
22 |
|
23 |
# =================================================================================================
|
24 |
-
|
25 |
-
@spaces.GPU
|
26 |
-
def InpaintPitches(input_midi, input_num_of_notes, input_patch_number):
|
27 |
-
print('=' * 70)
|
28 |
-
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
29 |
-
start_time = reqtime.time()
|
30 |
-
|
31 |
-
print('Loading model...')
|
32 |
-
|
33 |
-
SEQ_LEN = 8192 # Models seq len
|
34 |
-
PAD_IDX = 19463 # Models pad index
|
35 |
-
DEVICE = 'cuda' # 'cuda'
|
36 |
-
|
37 |
-
# instantiate the model
|
38 |
-
|
39 |
-
model = TransformerWrapper(
|
40 |
-
num_tokens = PAD_IDX+1,
|
41 |
-
max_seq_len = SEQ_LEN,
|
42 |
-
attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True)
|
43 |
-
)
|
44 |
-
|
45 |
-
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
|
46 |
-
|
47 |
-
model.to(DEVICE)
|
48 |
-
print('=' * 70)
|
49 |
-
|
50 |
-
print('Loading model checkpoint...')
|
51 |
-
|
52 |
-
model.load_state_dict(
|
53 |
-
torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth',
|
54 |
-
map_location=DEVICE))
|
55 |
-
print('=' * 70)
|
56 |
-
|
57 |
-
model.eval()
|
58 |
-
|
59 |
-
if DEVICE == 'cpu':
|
60 |
-
dtype = torch.bfloat16
|
61 |
-
else:
|
62 |
-
dtype = torch.bfloat16
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
print('Done!')
|
67 |
-
print('=' * 70)
|
68 |
-
|
69 |
-
fn = os.path.basename(input_midi.name)
|
70 |
-
fn1 = fn.split('.')[0]
|
71 |
-
|
72 |
-
input_num_of_notes = max(8, min(2048, input_num_of_notes))
|
73 |
-
|
74 |
-
print('-' * 70)
|
75 |
-
print('Input file name:', fn)
|
76 |
-
print('Req num of notes:', input_num_of_notes)
|
77 |
-
print('Req patch number:', input_patch_number)
|
78 |
-
print('-' * 70)
|
79 |
|
80 |
#===============================================================================
|
81 |
-
raw_score = TMIDIX.midi2single_track_ms_score(input_midi
|
82 |
|
83 |
#===============================================================================
|
84 |
# Enhanced score notes
|
@@ -191,35 +138,85 @@ def InpaintPitches(input_midi, input_num_of_notes, input_patch_number):
|
|
191 |
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
|
192 |
|
193 |
pe = e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
#==================================================================
|
197 |
|
198 |
print('=' * 70)
|
199 |
-
print('Number of tokens:', len(
|
200 |
-
print('Number of notes:', len(
|
201 |
-
print('Sample output events',
|
202 |
print('=' * 70)
|
203 |
print('Generating...')
|
204 |
|
205 |
-
#@title Pitches/Instruments Inpainting
|
206 |
-
|
207 |
-
#@markdown You can stop the inpainting at any time to render partial results
|
208 |
-
|
209 |
-
#@markdown Inpainting settings
|
210 |
-
|
211 |
-
#@markdown Select MIDI patch present in the composition to inpaint
|
212 |
-
|
213 |
-
inpaint_MIDI_patch = input_patch_number
|
214 |
-
|
215 |
-
#@markdown Generation settings
|
216 |
-
number_of_prime_notes = 24
|
217 |
-
number_of_memory_tokens = 1024 # @param {type:"slider", min:3, max:8190, step:3}
|
218 |
-
number_of_samples_per_inpainted_note = 1 #@param {type:"slider", min:1, max:16, step:1}
|
219 |
temperature = 0.85
|
220 |
|
221 |
print('=' * 70)
|
222 |
-
print('Giant Music Transformer
|
223 |
print('=' * 70)
|
224 |
|
225 |
#==========================================================================
|
|
|
1 |
+
# https://huggingface.co/spaces/asigalov61/Intelligent-MIDI-Comparator
|
2 |
|
3 |
import os.path
|
4 |
|
|
|
21 |
import matplotlib.pyplot as plt
|
22 |
|
23 |
# =================================================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def read_MIDI(input_midi)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
#===============================================================================
|
28 |
+
raw_score = TMIDIX.midi2single_track_ms_score(input_midi)
|
29 |
|
30 |
#===============================================================================
|
31 |
# Enhanced score notes
|
|
|
138 |
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304])
|
139 |
|
140 |
pe = e
|
141 |
+
|
142 |
+
return melody_chords, melody_chords2
|
143 |
+
|
144 |
+
# =================================================================================================
|
145 |
+
|
146 |
+
|
147 |
+
@spaces.GPU
|
148 |
+
def InpaintPitches(input_midi, input_num_of_notes, input_patch_number):
|
149 |
+
print('=' * 70)
|
150 |
+
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
151 |
+
start_time = reqtime.time()
|
152 |
+
|
153 |
+
print('Loading model...')
|
154 |
+
|
155 |
+
SEQ_LEN = 8192 # Models seq len
|
156 |
+
PAD_IDX = 19463 # Models pad index
|
157 |
+
DEVICE = 'cuda' # 'cuda'
|
158 |
+
|
159 |
+
# instantiate the model
|
160 |
+
|
161 |
+
model = TransformerWrapper(
|
162 |
+
num_tokens = PAD_IDX+1,
|
163 |
+
max_seq_len = SEQ_LEN,
|
164 |
+
attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True)
|
165 |
+
)
|
166 |
|
167 |
+
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
|
168 |
+
|
169 |
+
model.to(DEVICE)
|
170 |
+
print('=' * 70)
|
171 |
+
|
172 |
+
print('Loading model checkpoint...')
|
173 |
+
|
174 |
+
model.load_state_dict(
|
175 |
+
torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth',
|
176 |
+
map_location=DEVICE))
|
177 |
+
print('=' * 70)
|
178 |
+
|
179 |
+
model.eval()
|
180 |
+
|
181 |
+
if DEVICE == 'cpu':
|
182 |
+
dtype = torch.bfloat16
|
183 |
+
else:
|
184 |
+
dtype = torch.bfloat16
|
185 |
+
|
186 |
+
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
|
187 |
+
|
188 |
+
print('Done!')
|
189 |
+
print('=' * 70)
|
190 |
+
|
191 |
+
fn = os.path.basename(input_midi.name)
|
192 |
+
fn1 = fn.split('.')[0]
|
193 |
+
|
194 |
+
input_num_of_notes = max(8, min(2048, input_num_of_notes))
|
195 |
+
|
196 |
+
print('-' * 70)
|
197 |
+
print('Input file name:', fn)
|
198 |
+
print('Req num of notes:', input_num_of_notes)
|
199 |
+
print('Req patch number:', input_patch_number)
|
200 |
+
print('-' * 70)
|
201 |
+
|
202 |
+
#===============================================================================
|
203 |
+
|
204 |
+
toekns, notes = read_MIDI(input_midi.name)
|
205 |
+
|
206 |
+
|
207 |
#==================================================================
|
208 |
|
209 |
print('=' * 70)
|
210 |
+
print('Number of tokens:', len(toekns))
|
211 |
+
print('Number of notes:', len(notes))
|
212 |
+
print('Sample output events', toekns[:5])
|
213 |
print('=' * 70)
|
214 |
print('Generating...')
|
215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
temperature = 0.85
|
217 |
|
218 |
print('=' * 70)
|
219 |
+
print('Giant Music Transformer MIDI Comparator')
|
220 |
print('=' * 70)
|
221 |
|
222 |
#==========================================================================
|