import os.path import time as reqtime import datetime from pytz import timezone import torch import spaces import gradio as gr from x_transformer_1_23_2 import * import random import tqdm from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt in_space = os.getenv("SYSTEM") == "spaces" # ================================================================================================= @spaces.GPU def InpaintPitches(input_midi, input_num_of_notes, input_patch_number): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('Loading model...') SEQ_LEN = 8192 # Models seq len PAD_IDX = 19463 # Models pad index DEVICE = 'cuda' # 'cuda' # instantiate the model model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True) ) model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) model.to(DEVICE) print('=' * 70) print('Loading model checkpoint...') model.load_state_dict( torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth', map_location=DEVICE)) print('=' * 70) model.eval() if DEVICE == 'cpu': dtype = torch.bfloat16 else: dtype = torch.bfloat16 ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) print('Done!') print('=' * 70) fn = os.path.basename(input_midi.name) fn1 = fn.split('.')[0] input_num_of_notes = max(8, min(2048, input_num_of_notes)) print('-' * 70) print('Input file name:', fn) print('Req num of notes:', input_num_of_notes) print('Req patch number:', input_patch_number) print('-' * 70) #=============================================================================== raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) #=============================================================================== # Enhanced score notes events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] #======================================================= # PRE-PROCESSING # checking number of instruments in a composition instruments_list_without_drums = list(set([y[3] for y in events_matrix1 if y[3] != 9])) instruments_list = list(set([y[3] for y in events_matrix1])) if len(events_matrix1) > 0 and len(instruments_list_without_drums) > 0: #====================================== events_matrix2 = [] # Recalculating timings for e in events_matrix1: # Original timings e[1] = int(e[1] / 16) e[2] = int(e[2] / 16) #=================================== # ORIGINAL COMPOSITION #=================================== # Sorting by patch, pitch, then by start-time events_matrix1.sort(key=lambda x: x[6]) events_matrix1.sort(key=lambda x: x[4], reverse=True) events_matrix1.sort(key=lambda x: x[1]) #======================================================= # FINAL PROCESSING melody_chords = [] melody_chords2 = [] # Break between compositions / Intro seq if 9 in instruments_list: drums_present = 19331 # Yes else: drums_present = 19330 # No if events_matrix1[0][3] != 9: pat = events_matrix1[0][6] else: pat = 128 melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq #======================================================= # MAIN PROCESSING CYCLE #======================================================= abs_time = 0 pbar_time = 0 pe = events_matrix1[0] chords_counter = 1 comp_chords_len = len(list(set([y[1] for y in events_matrix1]))) for e in events_matrix1: #======================================================= # Timings... # Cliping all values... delta_time = max(0, min(255, e[1]-pe[1])) # Durations and channels dur = max(0, min(255, e[2])) cha = max(0, min(15, e[3])) # Patches if cha == 9: # Drums patch will be == 128 pat = 128 else: pat = e[6] # Pitches ptc = max(1, min(127, e[4])) # Velocities # Calculating octo-velocity vel = max(8, min(127, e[5])) velocity = round(vel / 15)-1 #======================================================= # FINAL NOTE SEQ # Writing final note asynchronously dur_vel = (8 * dur) + velocity pat_ptc = (129 * pat) + ptc melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304]) pe = e #================================================================== print('=' * 70) print('Number of tokens:', len(melody_chords)) print('Number of notes:', len(melody_chords2)) print('Sample output events', melody_chords[:5]) print('=' * 70) print('Generating...') output = [] max_chords_limit = 8 temperature=0.9 num_memory_tokens=4096 #@title Pitches/Instruments Inpainting #@markdown You can stop the inpainting at any time to render partial results #@markdown Inpainting settings #@markdown Select MIDI patch present in the composition to inpaint inpaint_MIDI_patch = input_patch_number #@markdown Generation settings number_of_prime_tokens = 90 # @param {type:"slider", min:3, max:8190, step:3} number_of_memory_tokens = 2048 # @param {type:"slider", min:3, max:8190, step:3} number_of_samples_per_inpainted_note = 1 #@param {type:"slider", min:1, max:16, step:1} print('=' * 70) print('Giant Music Transformer Inpainting Model Generator') print('=' * 70) out2 = [] for m in melody_chords[:number_of_prime_tokens]: out2.append(m) for i in range(number_of_prime_tokens, len(melody_chords)): cpatch = (melody_chords[i]-2304) // 129 if 2304 <= melody_chords[i] < 18945 and (cpatch) == inpaint_MIDI_patch: samples = [] for j in range(number_of_samples_per_inpainted_note): inp = torch.LongTensor(out2[-number_of_memory_tokens:]).cuda() with ctx: out1 = model.generate(inp, 1, temperature=temperature, return_prime=True, verbose=False) with torch.no_grad(): test_loss, test_acc = model(out1) samples.append([out1.tolist()[0][-1], test_acc.tolist()]) accs = [y[1] for y in samples] max_acc = max(accs) max_acc_sample = samples[accs.index(max_acc)][0] cpitch = (max_acc_sample-2304) % 129 out2.extend([((cpatch * 129) + cpitch)+2304]) else: out2.append(melody_chords[i]) print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') print('=' * 70) print('Sample INTs', out2[:12]) print('=' * 70) if len(out2) != 0: song = out2 song_f = [] time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 patches = [-1] * 16 channels = [0] * 16 channels[9] = 1 for ss in song: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 2304: dur = ((ss-256) // 8) * 16 vel = (((ss-256) % 8)+1) * 15 if 2304 <= ss < 18945: patch = (ss-2304) // 129 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-2304) % 129 song_f.append(['note', time, dur, channel, pitch, vel, patch ]) patches = [0 if x==-1 else x for x in patches] detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'Giant Music Transformer', output_file_name = fn1, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) new_fn = fn1+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=soundfont, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) #======================================================== output_midi_title = str(fn1) output_midi_summary = str(song_f[:3]) output_midi = str(new_fn) output_audio = (16000, audio) output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) print('Output MIDI file name:', output_midi) print('Output MIDI title:', output_midi_title) print('Output MIDI summary:', output_midi_summary) print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" app = gr.Blocks() with app: gr.Markdown("

Inpaint Music Transformer

") gr.Markdown("

Inpaint pitches in any MIDI

") gr.Markdown( "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Inpaint-Music-Transformer&style=flat)\n\n" "This is a demo of the Giant Music Transformer pitches inpainting feature\n\n" "Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n" "[Open In Colab]" "(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)" " for all features, faster execution and endless generation" ) gr.Markdown("## Upload your MIDI or select a sample example MIDI") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) input_num_of_notes = gr.Slider(8, 2048, value=128, step=8, label="Number of composition notes to inpaint") input_patch_number = gr.Slider(0, 127, value=0, step=1, label="Composition MIDI patch to inpaint") run_btn = gr.Button("generate", variant="primary") gr.Markdown("## Generation results") output_midi_title = gr.Textbox(label="Output MIDI title") output_midi_summary = gr.Textbox(label="Output MIDI summary") output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") output_plot = gr.Plot(label="Output MIDI score plot") output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) run_event = run_btn.click(InpaintPitches, [input_midi, input_num_of_notes, input_patch_number], [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) gr.Examples( [["Giant-Music-Transformer-Piano-Seed-1.mid", 128, 0], ["Giant-Music-Transformer-Piano-Seed-2.mid", 128, 0], ["Giant-Music-Transformer-Piano-Seed-3.mid", 128, 0], ["Giant-Music-Transformer-Piano-Seed-4.mid", 128, 0], ["Giant-Music-Transformer-Piano-Seed-5.mid", 128, 0], ["Giant-Music-Transformer-Piano-Seed-6.mid", 128, 0], ["Giant-Music-Transformer-MI-Seed-1.mid", 128, 71], ["Giant-Music-Transformer-MI-Seed-2.mid", 128, 40], ["Giant-Music-Transformer-MI-Seed-3.mid", 128, 40], ["Giant-Music-Transformer-MI-Seed-4.mid", 128, 40], ["Giant-Music-Transformer-MI-Seed-5.mid", 128, 40], ["Giant-Music-Transformer-MI-Seed-6.mid", 128, 0] ], [input_midi, input_num_of_notes, input_patch_number], [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot], InpaintPitches, cache_examples=True, ) app.queue().launch()