# https://huggingface.co/spaces/asigalov61/Intelligent-MIDI-Comparator import os.path import time as reqtime import datetime from pytz import timezone import torch import spaces import gradio as gr from x_transformer_1_23_2 import * import random import tqdm from midi_to_colab_audio import midi_to_colab_audio import TMIDIX import matplotlib.pyplot as plt from sklearn.metrics import pairwise # ================================================================================================= def hsv_to_rgb(h, s, v): if s == 0.0: return v, v, v i = int(h*6.0) f = (h*6.0) - i p = v*(1.0 - s) q = v*(1.0 - s*f) t = v*(1.0 - s*(1.0-f)) i = i%6 return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i] def generate_colors(n): return [hsv_to_rgb(i/n, 1, 1) for i in range(n)] def add_arrays(a, b): return [sum(pair) for pair in zip(a, b)] def plot_ms_SONG(ms_song, preview_length_in_notes=0, block_lines_times_list = None, plot_title='ms Song', max_num_colors=129, drums_color_num=128, plot_size=(11,4), note_height = 0.75, show_grid_lines=False, return_plt = False, timings_multiplier=1, plot_curve_values=None, plot_curve_notes_step=200, save_plot='' ): '''Tegridy ms SONG plotter/vizualizer''' notes = [s for s in ms_song if s[0] == 'note'] if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7): print('The song notes do not have patches information') print('Please add patches to the notes in the song') else: start_times = [(s[1] * timings_multiplier) / 1000 for s in notes] durations = [(s[2] * timings_multiplier) / 1000 for s in notes] pitches = [s[4] for s in notes] patches = [s[6] for s in notes] colors = generate_colors(max_num_colors) colors[drums_color_num] = (1, 1, 1) pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000 fig, ax = plt.subplots(figsize=plot_size) # Create a rectangle for each note with color based on patch number for start, duration, pitch, patch in zip(start_times, durations, pitches, patches): rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch]) ax.add_patch(rect) if plot_curve_values is not None: stimes = start_times[plot_curve_notes_step // 2::plot_curve_notes_step] min_val = min(plot_curve_values) max_val = max(plot_curve_values) spcva = [((value - min_val) / (max(max_val - min_val, 0.00001))) * 100 for value in plot_curve_values] ax.plot(stimes, spcva, marker='o', linestyle='-', color='w') # Set the limits of the plot ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))]) ax.set_ylim([min(spcva), max(spcva)]) # Set the background color to black ax.set_facecolor('black') fig.patch.set_facecolor('white') if preview_length_in_notes > 0: ax.axvline(x=pbl, c='white') if block_lines_times_list: for bl in block_lines_times_list: ax.axvline(x=bl, c='white') if show_grid_lines: ax.grid(color='white') plt.xlabel('Time (s)', c='black') plt.ylabel('MIDI Pitch', c='black') plt.title(plot_title) if return_plt: return fig if save_plot == '': plt.show() else: plt.savefig(save_plot) # ================================================================================================= def read_MIDI(input_midi): #=============================================================================== raw_score = TMIDIX.midi2single_track_ms_score(input_midi) #=============================================================================== # Enhanced score notes events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] #======================================================= # PRE-PROCESSING instruments_list = list(set([y[3] for y in events_matrix1])) #====================================== events_matrix1 = TMIDIX.augment_enhanced_score_notes(events_matrix1, timings_divider=16) #======================================================= # FINAL PROCESSING melody_chords = [] melody_chords2 = [] # Break between compositions / Intro seq if 9 in instruments_list: drums_present = 19331 # Yes else: drums_present = 19330 # No if events_matrix1[0][3] != 9: pat = events_matrix1[0][6] else: pat = 128 melody_chords.extend([19461, drums_present, 19332+pat]) # Intro seq #======================================================= # MAIN PROCESSING CYCLE #======================================================= abs_time = 0 pbar_time = 0 pe = events_matrix1[0] chords_counter = 1 comp_chords_len = len(list(set([y[1] for y in events_matrix1]))) for e in events_matrix1: #======================================================= # Timings... # Cliping all values... delta_time = max(0, min(255, e[1]-pe[1])) # Durations and channels dur = max(0, min(255, e[2])) cha = max(0, min(15, e[3])) # Patches if cha == 9: # Drums patch will be == 128 pat = 128 else: pat = e[6] # Pitches ptc = max(1, min(127, e[4])) # Velocities # Calculating octo-velocity vel = max(8, min(127, e[5])) velocity = round(vel / 15)-1 #======================================================= # FINAL NOTE SEQ # Writing final note asynchronously dur_vel = (8 * dur) + velocity pat_ptc = (129 * pat) + ptc melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304]) pe = e return melody_chords, melody_chords2 # ================================================================================================= def tokens_to_MIDI(tokens, MIDI_name): print('Rendering results...') print('=' * 70) print('Sample INTs', tokens[:12]) print('=' * 70) if len(tokens) != 0: song = tokens song_f = [] time = 0 dur = 0 vel = 90 pitch = 0 channel = 0 patches = [-1] * 16 channels = [0] * 16 channels[9] = 1 for ss in song: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 2304: dur = ((ss-256) // 8) * 16 vel = (((ss-256) % 8)+1) * 15 if 2304 <= ss < 18945: patch = (ss-2304) // 129 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-2304) % 129 song_f.append(['note', time, dur, channel, pitch, vel, patch ]) patches = [0 if x==-1 else x for x in patches] detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, output_signature = 'Intelligent MIDI Comparator', output_file_name = MIDI_name, track_name='Project Los Angeles', list_of_MIDI_patches=patches ) new_fn = MIDI_name+'.mid' audio = midi_to_colab_audio(new_fn, soundfont_path=soundfont, sample_rate=16000, volume_scale=10, output_for_gradio=True ) print('Done!') print('=' * 70) return new_fn, song_f, audio # ================================================================================================= @spaces.GPU def CompareMIDIs(input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('Loading model...') SEQ_LEN = 8192 # Models seq len PAD_IDX = 19463 # Models pad index DEVICE = 'cuda' # 'cuda' # instantiate the model model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True) ) model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) model.to(DEVICE) print('=' * 70) print('Loading model checkpoint...') model.load_state_dict( torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth', map_location=DEVICE)) print('=' * 70) model.eval() if DEVICE == 'cpu': dtype = torch.bfloat16 else: dtype = torch.bfloat16 ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) print('Done!') print('=' * 70) sfn = os.path.basename(input_src_midi.name) sfn1 = sfn.split('.')[0] tfn = os.path.basename(input_trg_midi.name) tfn1 = tfn.split('.')[0] print('-' * 70) print('Input src MIDI name:', sfn) print('Input trg MIDI name:', tfn) print('Req sampling resolution:', input_sampling_resolution) print('Req sampling overlap:', input_sampling_overlap) print('-' * 70) #=============================================================================== print('Loading MIDIs...') src_tokens, src_notes = read_MIDI(input_src_midi.name) trg_tokens, trg_notes = read_MIDI(input_trg_midi.name) #================================================================== print('=' * 70) print('Number of src tokens:', len(src_tokens)) print('Number of src notes:', len(src_notes)) print('Number of trg tokens:', len(trg_tokens)) print('Number of trg notes:', len(trg_notes)) #========================================================================== print('=' * 70) print('Comparing...') print('=' * 70) print('Giant Music Transformer MIDI Comparator') print('=' * 70) sampling_resolution = max(40, min(1000, input_sampling_resolution)) * 3 sampling_overlap = max(0, min(500, input_sampling_overlap)) * 3 comp_length = (min(len(src_tokens), len(trg_tokens)) // sampling_resolution) * sampling_resolution input_src_tokens = src_tokens[:comp_length] input_trg_tokens = trg_tokens[:comp_length] comp_cos_sims = [] # torch.cuda.empty_cache() for i in range(0, comp_length, max(1, sampling_resolution-sampling_overlap)): inp = [input_src_tokens[i:i+sampling_resolution]] inp = torch.LongTensor(inp).to(DEVICE) with ctx: with torch.no_grad(): out = model(inp) cache = out[2] src_embedings = cache.layer_hiddens[-1] inp = [input_trg_tokens[i:i+sampling_resolution]] inp = torch.LongTensor(inp).to(DEVICE) with ctx: with torch.no_grad(): out = model(inp) cache = out[2] trg_embedings = cache.layer_hiddens[-1] cos_sim = pairwise.cosine_similarity([src_embedings.cpu().detach().numpy()[0].flatten()], [trg_embedings.cpu().detach().numpy()[0].flatten()] ).tolist()[0][0] comp_cos_sims.append(cos_sim) output_min_sim = min(comp_cos_sims) output_avg_sim = sum(comp_cos_sims) / len(comp_cos_sims) output_max_sim = max(comp_cos_sims) print('Min sim:', output_min_sim) print('Avg sim:', output_avg_sim) print('max sim:', output_max_sim) print('=' * 70) print('Done!') print('=' * 70) #=============================================================================== print('Rendering results...') sname, ssong_f, saudio = tokens_to_MIDI(src_tokens[:comp_length], sfn1) tname, tsong_f, taudio = tokens_to_MIDI(trg_tokens[:comp_length], tfn1) #======================================================== output_src_audio = (16000, saudio) output_src_plot = plot_ms_SONG(ssong_f, plot_title=sfn1, plot_curve_values=comp_cos_sims, plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3, return_plt=True ) output_trg_audio = (16000, taudio) output_trg_plot = plot_ms_SONG(tsong_f, plot_title=tfn1, plot_curve_values=comp_cos_sims, plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3, return_plt=True ) print('Done!') print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" app = gr.Blocks() with app: gr.Markdown("