Spaces:
Running
Running
#================================================================ | |
# https://huggingface.co/spaces/asigalov61/MIDI-Identification | |
#================================================================ | |
import os | |
import hashlib | |
import time | |
import datetime | |
from pytz import timezone | |
import copy | |
from collections import Counter | |
import random | |
import statistics | |
import re | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from datasets import load_dataset | |
import TMIDIX | |
#========================================================================================================== | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
#========================================================================================================== | |
def format_table_data(data_string): | |
# Split the string into rows based on newlines | |
rows = data_string.strip().split("\n") | |
# Initialize a list to store the formatted data | |
formatted_data = [] | |
for row in rows: | |
# Split each row into columns based on the separator '|' and strip extra spaces | |
columns = row.split("|") | |
formatted_row = [cell.strip() for cell in columns] | |
# Remove cells with only "-" symbols | |
formatted_row = [cell for cell in formatted_row if not all(char == '-' for char in cell)] | |
# Handle uneven rows by ensuring each row has the same number of columns | |
max_columns = max(len(columns) for columns in formatted_data) if formatted_data else len(columns) | |
while len(formatted_row) < max_columns: | |
formatted_row.append("") # Add empty strings to fill the row | |
formatted_data.append(formatted_row) | |
# Handle case where new rows have more columns than previous rows | |
max_columns = max(len(row) for row in formatted_data) | |
for row in formatted_data: | |
while len(row) < max_columns: | |
row.append("") # Add empty strings to fill the row | |
return formatted_data | |
#========================================================================================================== | |
MODELS = {'Mistral Nemo Instruct 2407': 'mistralai/Mistral-Nemo-Instruct-2407' | |
} | |
#========================================================================================================== | |
def ID_MIDI(input_midi, input_model): | |
print('*' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = time.time() | |
print('=' * 70) | |
print('Loading MIDI...') | |
fn = os.path.basename(input_midi) | |
fn1 = fn.split('.')[0] | |
fdata = open(input_midi, 'rb').read() | |
input_midi_md5hash = hashlib.md5(fdata).hexdigest() | |
print('=' * 70) | |
print('Requested settings:') | |
print('=' * 70) | |
print('Input MIDI file name:', fn) | |
print('Input MIDI md5 hash', input_midi_md5hash) | |
print('Input model:', input_model) | |
print('=' * 70) | |
print('Processing MIDI...Please wait...') | |
#======================================================= | |
# START PROCESSING | |
new_midi_data = TMIDIX.score2midi(TMIDIX.midi2score(fdata)) | |
new_midi_md5hash = hashlib.md5(new_midi_data).hexdigest() | |
print('New md5 hash:', new_midi_md5hash) | |
print('Done!') | |
print('=' * 70) | |
print('Processing...Please wait...') | |
output_str = 'None' | |
output_midi_records_count = 0 | |
output_midi_src_dataset= 'Unknown' | |
output_midi_path_str = 'None' | |
raw_score = TMIDIX.midi2single_track_ms_score(fdata) | |
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, sort_drums_last=True) | |
output_midi_src_dataset = 'unknown' | |
output_midi_path_str = 'none' | |
if new_midi_md5hash in monster_midi_titles['md5_hashes_titles_dict']: | |
title = random.choice(monster_midi_titles['md5_hashes_titles_dict'][new_midi_md5hash]).split(' --- ') | |
song = title[0] | |
artist = title[1] | |
song_description = TMIDIX.escore_notes_to_text_description(escore_notes, song_name=song, artist_name=artist) | |
else: | |
song_description = TMIDIX.escore_notes_to_text_description(escore_notes) | |
if new_midi_md5hash in midid_md5_hashes: | |
midid_entry_idx = midid_md5_hashes.index(new_midi_md5hash) | |
MIDID_record = midid_dataset[midid_entry_idx]['midid'] | |
output_midi_records_count = len(MIDID_record) | |
output_entry = random.choice(MIDID_record) | |
output_midi_src_dataset = output_entry[0] | |
output_midi_path_str = TMIDIX.clean_string(output_entry[1], regex=r'[^a-zA-Z0-9.() \n]') | |
client = InferenceClient(api_key=HF_TOKEN) | |
prompt = "Please create a summary table for a MIDI file based on the following keywords strings, best possible description and best possible summary fields. Please respond with the table only. Do not say anything else. Thank you." | |
data = 'Source MIDI dataset: ' + output_midi_src_dataset + '\n\n' | |
data += 'MIDI keywords strings:' + '\n' | |
data += output_midi_path_str + '\n\n' | |
data += 'Music description:' + '\n' | |
data += song_description | |
messages = [ | |
{ | |
"role": "user", | |
"content": prompt + "\n\n" + data | |
} | |
] | |
completion = client.chat.completions.create( | |
#model="Qwen/Qwen2.5-72B-Instruct", | |
model=MODELS[input_model], | |
messages=messages, | |
max_tokens=500 | |
) | |
output_str = completion.choices[0].message['content'] | |
output_table_data = format_table_data(output_str) | |
print('Done!') | |
print('=' * 70) | |
print('Original MIDI unique records count', output_midi_records_count) | |
print('Original MIDI dataset', output_midi_src_dataset) | |
print('Original MIDI path string', data) | |
print('=' * 70) | |
print(output_str) | |
print('=') | |
#======================================================== | |
output_midi_md5 = str(new_midi_md5hash) | |
#======================================================== | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (time.time() - start_time), 'sec') | |
print('*' * 70) | |
#======================================================== | |
return output_midi_md5, output_midi_records_count, output_midi_src_dataset, data, output_table_data | |
#========================================================================================================== | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
print('Loading MIDID database...') | |
midid_dataset = load_dataset("asigalov61/MIDID")['train'] | |
midid_md5_hashes = midid_dataset['midi_hash'] | |
print('Done!') | |
print('=' * 70) | |
print('Loading Monster MIDI titles database...') | |
monster_midi_titles = TMIDIX.Tegridy_Any_Pickle_File_Reader('Monster_MIDI_Titles_Database_CC_BY_NC_SA.pickle') | |
print('Done!') | |
print('=' * 70) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>MIDI Identification</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Identify any MIDI in a comprehensive database of 2.32M+ MIDI records</h1>") | |
gr.Markdown("This is a demo for tegridy-tools, MIDID and Monster MIDI dataset\n\n" | |
"Please see [tegridy-tools](https://github.com/asigalov61/tegridy-tools), [MIDID](https://huggingface.co/datasets/asigalov61/MIDID) and [Monster MIDI Dataset](https://github.com/asigalov61/Monster-MIDI-Dataset) repos for more information\n\n" | |
) | |
gr.Markdown("## Upload your MIDI") | |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="filepath") | |
input_model = gr.Dropdown(['Mistral Nemo Instruct 2407', 'Mistral Nemo Instruct 2407'], | |
value='Mistral Nemo Instruct 2407', | |
label='Select model' | |
) | |
submit = gr.Button("Identify MIDI", variant="primary") | |
gr.Markdown("## MIDI identification results") | |
output_midi_md5 = gr.Textbox(label="Monster MIDI dataset md5 hash") | |
output_midi_records_count = gr.Textbox(label="Original MIDI unique records count") | |
output_midi_src_dataset = gr.Textbox(label="Original MIDI dataset pretty name") | |
output_midi_path_str = gr.Textbox(label="Original MIDI raw path string") | |
output_MIDID_results_table = gr.Dataframe(label="MIDID database results table", wrap=True, col_count=(3, 'dynamic')) | |
run_event = submit.click(ID_MIDI, [input_midi, | |
input_model | |
], | |
[output_midi_md5, | |
output_midi_records_count, | |
output_midi_src_dataset, | |
output_midi_path_str, | |
output_MIDID_results_table | |
]) | |
app.queue().launch() |