asigalov61
commited on
Commit
•
c9d9ce3
1
Parent(s):
de9ee66
Upload 2 files
Browse files
Melody2Song_Seq2Seq_Music_Transformer.ipynb
ADDED
@@ -0,0 +1,523 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "VGrGd6__l5ch"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"# Melody2Song Seq2Seq Music Transformer (ver. 1.0)\n",
|
10 |
+
"\n",
|
11 |
+
"***\n",
|
12 |
+
"\n",
|
13 |
+
"Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools\n",
|
14 |
+
"\n",
|
15 |
+
"***\n",
|
16 |
+
"\n",
|
17 |
+
"WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/\n",
|
18 |
+
"\n",
|
19 |
+
"***\n",
|
20 |
+
"\n",
|
21 |
+
"#### Project Los Angeles\n",
|
22 |
+
"\n",
|
23 |
+
"#### Tegridy Code 2024\n",
|
24 |
+
"\n",
|
25 |
+
"***"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "markdown",
|
30 |
+
"metadata": {
|
31 |
+
"id": "shLrgoXdl5cj"
|
32 |
+
},
|
33 |
+
"source": [
|
34 |
+
"# (GPU CHECK)"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": null,
|
40 |
+
"metadata": {
|
41 |
+
"id": "X3rABEpKCO02",
|
42 |
+
"cellView": "form"
|
43 |
+
},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"# @title NVIDIA GPU Check\n",
|
47 |
+
"!nvidia-smi"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "markdown",
|
52 |
+
"metadata": {
|
53 |
+
"id": "0RcVC4btl5ck"
|
54 |
+
},
|
55 |
+
"source": [
|
56 |
+
"# (SETUP ENVIRONMENT)"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": null,
|
62 |
+
"metadata": {
|
63 |
+
"id": "viHgEaNACPTs",
|
64 |
+
"cellView": "form"
|
65 |
+
},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"# @title Install requirements\n",
|
69 |
+
"!git clone --depth 1 https://github.com/asigalov61/tegridy-tools\n",
|
70 |
+
"!pip install einops\n",
|
71 |
+
"!pip install torch-summary\n",
|
72 |
+
"!apt install fluidsynth"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "code",
|
77 |
+
"execution_count": null,
|
78 |
+
"metadata": {
|
79 |
+
"id": "DzCOZU_gBiQV",
|
80 |
+
"cellView": "form"
|
81 |
+
},
|
82 |
+
"outputs": [],
|
83 |
+
"source": [
|
84 |
+
"# @title Load all needed modules\n",
|
85 |
+
"\n",
|
86 |
+
"print('=' * 70)\n",
|
87 |
+
"print('Loading needed modules...')\n",
|
88 |
+
"print('=' * 70)\n",
|
89 |
+
"\n",
|
90 |
+
"import os\n",
|
91 |
+
"import pickle\n",
|
92 |
+
"import random\n",
|
93 |
+
"import secrets\n",
|
94 |
+
"import tqdm\n",
|
95 |
+
"import math\n",
|
96 |
+
"import torch\n",
|
97 |
+
"\n",
|
98 |
+
"import matplotlib.pyplot as plt\n",
|
99 |
+
"\n",
|
100 |
+
"from torchsummary import summary\n",
|
101 |
+
"\n",
|
102 |
+
"%cd /content/tegridy-tools/tegridy-tools/\n",
|
103 |
+
"\n",
|
104 |
+
"import TMIDIX\n",
|
105 |
+
"from midi_to_colab_audio import midi_to_colab_audio\n",
|
106 |
+
"\n",
|
107 |
+
"%cd /content/tegridy-tools/tegridy-tools/X-Transformer\n",
|
108 |
+
"\n",
|
109 |
+
"from x_transformer_1_23_2 import *\n",
|
110 |
+
"\n",
|
111 |
+
"%cd /content/\n",
|
112 |
+
"\n",
|
113 |
+
"import random\n",
|
114 |
+
"\n",
|
115 |
+
"from sklearn import metrics\n",
|
116 |
+
"\n",
|
117 |
+
"from IPython.display import Audio, display\n",
|
118 |
+
"\n",
|
119 |
+
"from huggingface_hub import hf_hub_download\n",
|
120 |
+
"\n",
|
121 |
+
"from google.colab import files\n",
|
122 |
+
"\n",
|
123 |
+
"print('=' * 70)\n",
|
124 |
+
"print('Done')\n",
|
125 |
+
"print('=' * 70)\n",
|
126 |
+
"print('Torch version:', torch.__version__)\n",
|
127 |
+
"print('=' * 70)\n",
|
128 |
+
"print('Enjoy! :)')\n",
|
129 |
+
"print('=' * 70)"
|
130 |
+
]
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"cell_type": "markdown",
|
134 |
+
"source": [
|
135 |
+
"# (SETUP DATA AND MODEL)"
|
136 |
+
],
|
137 |
+
"metadata": {
|
138 |
+
"id": "SQ1_7P4bLdtB"
|
139 |
+
}
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"source": [
|
144 |
+
"#@title Load Melody2Song Seq2Seq Music Trnasofmer Data and Pre-Trained Model\n",
|
145 |
+
"\n",
|
146 |
+
"#@markdown Model precision option\n",
|
147 |
+
"\n",
|
148 |
+
"model_precision = \"bfloat16\" # @param [\"bfloat16\", \"float16\"]\n",
|
149 |
+
"\n",
|
150 |
+
"plot_tokens_embeddings = True # @param {type:\"boolean\"}\n",
|
151 |
+
"\n",
|
152 |
+
"print('=' * 70)\n",
|
153 |
+
"print('Donwloading Melody2Song Seq2Seq Music Transformer Data File...')\n",
|
154 |
+
"print('=' * 70)\n",
|
155 |
+
"\n",
|
156 |
+
"data_path = '/content'\n",
|
157 |
+
"\n",
|
158 |
+
"if os.path.isfile(data_path+'/Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data.pickle'):\n",
|
159 |
+
" print('Data file already exists...')\n",
|
160 |
+
"\n",
|
161 |
+
"else:\n",
|
162 |
+
" hf_hub_download(repo_id='asigalov61/Melody2Song-Seq2Seq-Music-Transformer',\n",
|
163 |
+
" repo_type='space',\n",
|
164 |
+
" filename='Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data.pickle',\n",
|
165 |
+
" local_dir=data_path,\n",
|
166 |
+
" )\n",
|
167 |
+
"\n",
|
168 |
+
"print('=' * 70)\n",
|
169 |
+
"seed_melodies_data = TMIDIX.Tegridy_Any_Pickle_File_Reader('Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data')\n",
|
170 |
+
"\n",
|
171 |
+
"print('=' * 70)\n",
|
172 |
+
"print('Loading Melody2Song Seq2Seq Music Transformer Pre-Trained Model...')\n",
|
173 |
+
"print('Please wait...')\n",
|
174 |
+
"print('=' * 70)\n",
|
175 |
+
"\n",
|
176 |
+
"full_path_to_models_dir = \"/content\"\n",
|
177 |
+
"\n",
|
178 |
+
"model_checkpoint_file_name = 'Melody2Song_Seq2Seq_Music_Transformer_Trained_Model_28482_steps_0.719_loss_0.7865_acc.pth'\n",
|
179 |
+
"model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name\n",
|
180 |
+
"num_layers = 24\n",
|
181 |
+
"if os.path.isfile(model_path):\n",
|
182 |
+
" print('Model already exists...')\n",
|
183 |
+
"\n",
|
184 |
+
"else:\n",
|
185 |
+
" hf_hub_download(repo_id='asigalov61/Melody2Song-Seq2Seq-Music-Transformer',\n",
|
186 |
+
" repo_type='space',\n",
|
187 |
+
" filename=model_checkpoint_file_name,\n",
|
188 |
+
" local_dir=full_path_to_models_dir,\n",
|
189 |
+
" )\n",
|
190 |
+
"\n",
|
191 |
+
"\n",
|
192 |
+
"print('=' * 70)\n",
|
193 |
+
"print('Instantiating model...')\n",
|
194 |
+
"\n",
|
195 |
+
"torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul\n",
|
196 |
+
"torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn\n",
|
197 |
+
"device_type = 'cuda'\n",
|
198 |
+
"\n",
|
199 |
+
"if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():\n",
|
200 |
+
" dtype = 'bfloat16'\n",
|
201 |
+
"else:\n",
|
202 |
+
" dtype = 'float16'\n",
|
203 |
+
"\n",
|
204 |
+
"if model_precision == 'float16':\n",
|
205 |
+
" dtype = 'float16'\n",
|
206 |
+
"\n",
|
207 |
+
"ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]\n",
|
208 |
+
"ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)\n",
|
209 |
+
"\n",
|
210 |
+
"SEQ_LEN = 2560\n",
|
211 |
+
"PAD_IDX = 514\n",
|
212 |
+
"\n",
|
213 |
+
"# instantiate the model\n",
|
214 |
+
"\n",
|
215 |
+
"model = TransformerWrapper(\n",
|
216 |
+
" num_tokens = PAD_IDX+1,\n",
|
217 |
+
" max_seq_len = SEQ_LEN,\n",
|
218 |
+
" attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 16, attn_flash = True)\n",
|
219 |
+
")\n",
|
220 |
+
"\n",
|
221 |
+
"model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)\n",
|
222 |
+
"\n",
|
223 |
+
"model.cuda()\n",
|
224 |
+
"print('=' * 70)\n",
|
225 |
+
"\n",
|
226 |
+
"print('Loading model checkpoint...')\n",
|
227 |
+
"\n",
|
228 |
+
"model.load_state_dict(torch.load(model_path))\n",
|
229 |
+
"print('=' * 70)\n",
|
230 |
+
"\n",
|
231 |
+
"model.eval()\n",
|
232 |
+
"\n",
|
233 |
+
"print('Done!')\n",
|
234 |
+
"print('=' * 70)\n",
|
235 |
+
"\n",
|
236 |
+
"print('Model will use', dtype, 'precision...')\n",
|
237 |
+
"print('=' * 70)\n",
|
238 |
+
"\n",
|
239 |
+
"# Model stats\n",
|
240 |
+
"print('Model summary...')\n",
|
241 |
+
"summary(model)\n",
|
242 |
+
"\n",
|
243 |
+
"if plot_tokens_embeddings:\n",
|
244 |
+
"\n",
|
245 |
+
" tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()\n",
|
246 |
+
"\n",
|
247 |
+
" cos_sim = metrics.pairwise_distances(\n",
|
248 |
+
" tok_emb, metric='cosine'\n",
|
249 |
+
" )\n",
|
250 |
+
" plt.figure(figsize=(7, 7))\n",
|
251 |
+
" plt.imshow(cos_sim, cmap=\"inferno\", interpolation=\"nearest\")\n",
|
252 |
+
" im_ratio = cos_sim.shape[0] / cos_sim.shape[1]\n",
|
253 |
+
" plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)\n",
|
254 |
+
" plt.xlabel(\"Position\")\n",
|
255 |
+
" plt.ylabel(\"Position\")\n",
|
256 |
+
" plt.tight_layout()\n",
|
257 |
+
" plt.plot()\n",
|
258 |
+
" plt.savefig(\"/content/Melody2Song-Seq2Seq-Music-Transformer-Tokens-Embeddings-Plot.png\", bbox_inches=\"tight\")"
|
259 |
+
],
|
260 |
+
"metadata": {
|
261 |
+
"cellView": "form",
|
262 |
+
"id": "z7QLJ6FajxPA"
|
263 |
+
},
|
264 |
+
"execution_count": null,
|
265 |
+
"outputs": []
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "markdown",
|
269 |
+
"source": [
|
270 |
+
"# (LOAD SEED MELODY)"
|
271 |
+
],
|
272 |
+
"metadata": {
|
273 |
+
"id": "NdJ1_A8gNoV3"
|
274 |
+
}
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": null,
|
279 |
+
"metadata": {
|
280 |
+
"id": "AIvb6MmSO9R3",
|
281 |
+
"cellView": "form"
|
282 |
+
},
|
283 |
+
"outputs": [],
|
284 |
+
"source": [
|
285 |
+
"# @title Load desired seed melody\n",
|
286 |
+
"\n",
|
287 |
+
"#@markdown NOTE: If custom MIDI file is not provided, sample seed melody will be used instead\n",
|
288 |
+
"\n",
|
289 |
+
"full_path_to_custom_seed_melody_MIDI_file = \"/content/tegridy-tools/tegridy-tools/seed-melody.mid\" # @param {type:\"string\"}\n",
|
290 |
+
"sample_seed_melody_number = 0 # @param {type:\"slider\", min:0, max:203664, step:1}\n",
|
291 |
+
"\n",
|
292 |
+
"print('=' * 70)\n",
|
293 |
+
"print('Loading seed melody...')\n",
|
294 |
+
"print('=' * 70)\n",
|
295 |
+
"\n",
|
296 |
+
"if full_path_to_custom_seed_melody_MIDI_file != '':\n",
|
297 |
+
"\n",
|
298 |
+
" #===============================================================================\n",
|
299 |
+
" # Raw single-track ms score\n",
|
300 |
+
"\n",
|
301 |
+
" raw_score = TMIDIX.midi2single_track_ms_score(full_path_to_custom_seed_melody_MIDI_file)\n",
|
302 |
+
"\n",
|
303 |
+
" #===============================================================================\n",
|
304 |
+
" # Enhanced score notes\n",
|
305 |
+
"\n",
|
306 |
+
" escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]\n",
|
307 |
+
"\n",
|
308 |
+
" #===============================================================================\n",
|
309 |
+
" # Augmented enhanced score notes\n",
|
310 |
+
"\n",
|
311 |
+
" escore_notes = TMIDIX.recalculate_score_timings(TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32))\n",
|
312 |
+
"\n",
|
313 |
+
" cscore = TMIDIX.chordify_score([1000, escore_notes])\n",
|
314 |
+
"\n",
|
315 |
+
" fixed_mel_score = TMIDIX.fix_monophonic_score_durations([c[0] for c in cscore])\n",
|
316 |
+
"\n",
|
317 |
+
" melody = []\n",
|
318 |
+
"\n",
|
319 |
+
" pe = fixed_mel_score[0]\n",
|
320 |
+
"\n",
|
321 |
+
" for s in fixed_mel_score:\n",
|
322 |
+
"\n",
|
323 |
+
" dtime = max(0, min(127, s[1]-pe[1]))\n",
|
324 |
+
" dur = max(1, min(127, s[2]))\n",
|
325 |
+
" ptc = max(1, min(127, s[4]))\n",
|
326 |
+
"\n",
|
327 |
+
" chan = 1\n",
|
328 |
+
"\n",
|
329 |
+
" melody.extend([dtime, dur+128, (128 * chan)+ptc+256])\n",
|
330 |
+
"\n",
|
331 |
+
" pe = s\n",
|
332 |
+
"\n",
|
333 |
+
" if len(melody) >= 192:\n",
|
334 |
+
" melody = [512] + melody[:192] + [513]\n",
|
335 |
+
"\n",
|
336 |
+
" else:\n",
|
337 |
+
" mult = math.ceil(192 / len(melody))\n",
|
338 |
+
" melody = melody * mult\n",
|
339 |
+
" melody = [512] + melody[:192] + [513]\n",
|
340 |
+
"\n",
|
341 |
+
" print('Loaded custom MIDI melody:', full_path_to_custom_seed_melody_MIDI_file)\n",
|
342 |
+
" print('=' * 70)\n",
|
343 |
+
"\n",
|
344 |
+
"else:\n",
|
345 |
+
" melody = seed_melodies_data[sample_seed_melody_number]\n",
|
346 |
+
" print('Loaded sample seed melody #', sample_seed_melody_number)\n",
|
347 |
+
" print('=' * 70)\n",
|
348 |
+
"\n",
|
349 |
+
"print('Sample melody INTs:', melody[:10])\n",
|
350 |
+
"print('=' * 70)\n",
|
351 |
+
"print('Done!')\n",
|
352 |
+
"print('=' * 70)"
|
353 |
+
]
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"cell_type": "markdown",
|
357 |
+
"metadata": {
|
358 |
+
"id": "feXay_Ed7mG5"
|
359 |
+
},
|
360 |
+
"source": [
|
361 |
+
"# (GENERATE)"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"cell_type": "code",
|
366 |
+
"execution_count": null,
|
367 |
+
"metadata": {
|
368 |
+
"id": "naf65RxUXwDg",
|
369 |
+
"cellView": "form"
|
370 |
+
},
|
371 |
+
"outputs": [],
|
372 |
+
"source": [
|
373 |
+
"# @title Generate song from melody\n",
|
374 |
+
"\n",
|
375 |
+
"melody_MIDI_patch_number = 40 # @param {type:\"slider\", min:0, max:127, step:1}\n",
|
376 |
+
"accompaniment_MIDI_patch_number = 0 # @param {type:\"slider\", min:0, max:127, step:1}\n",
|
377 |
+
"number_of_tokens_to_generate = 900 # @param {type:\"slider\", min:15, max:2354, step:3}\n",
|
378 |
+
"number_of_batches_to_generate = 4 # @param {type:\"slider\", min:1, max:16, step:1}\n",
|
379 |
+
"top_k_value = 25 # @param {type:\"slider\", min:1, max:50, step:1}\n",
|
380 |
+
"temperature = 0.9 # @param {type:\"slider\", min:0.1, max:1, step:0.05}\n",
|
381 |
+
"render_MIDI_to_audio = True # @param {type:\"boolean\"}\n",
|
382 |
+
"\n",
|
383 |
+
"print('=' * 70)\n",
|
384 |
+
"print('Melody2Song Seq1Seq Music Transformer Model Generator')\n",
|
385 |
+
"print('=' * 70)\n",
|
386 |
+
"\n",
|
387 |
+
"print('Generating...')\n",
|
388 |
+
"print('=' * 70)\n",
|
389 |
+
"\n",
|
390 |
+
"model.eval()\n",
|
391 |
+
"\n",
|
392 |
+
"torch.cuda.empty_cache()\n",
|
393 |
+
"\n",
|
394 |
+
"x = (torch.tensor([melody] * number_of_batches_to_generate, dtype=torch.long, device='cuda'))\n",
|
395 |
+
"\n",
|
396 |
+
"with ctx:\n",
|
397 |
+
" out = model.generate(x,\n",
|
398 |
+
" number_of_tokens_to_generate,\n",
|
399 |
+
" filter_logits_fn=top_k,\n",
|
400 |
+
" filter_kwargs={'k': top_k_value},\n",
|
401 |
+
" temperature=0.9,\n",
|
402 |
+
" return_prime=False,\n",
|
403 |
+
" verbose=True)\n",
|
404 |
+
"\n",
|
405 |
+
"output = out.tolist()\n",
|
406 |
+
"\n",
|
407 |
+
"print('=' * 70)\n",
|
408 |
+
"print('Done!')\n",
|
409 |
+
"print('=' * 70)\n",
|
410 |
+
"\n",
|
411 |
+
"#======================================================================\n",
|
412 |
+
"print('Rendering results...')\n",
|
413 |
+
"\n",
|
414 |
+
"for i in range(number_of_batches_to_generate):\n",
|
415 |
+
"\n",
|
416 |
+
" print('=' * 70)\n",
|
417 |
+
" print('Batch #', i)\n",
|
418 |
+
" print('=' * 70)\n",
|
419 |
+
"\n",
|
420 |
+
" out1 = output[i]\n",
|
421 |
+
"\n",
|
422 |
+
" print('Sample INTs', out1[:12])\n",
|
423 |
+
" print('=' * 70)\n",
|
424 |
+
"\n",
|
425 |
+
" if len(out1) != 0:\n",
|
426 |
+
"\n",
|
427 |
+
" song = out1\n",
|
428 |
+
" song_f = []\n",
|
429 |
+
"\n",
|
430 |
+
" time = 0\n",
|
431 |
+
" dur = 0\n",
|
432 |
+
" vel = 90\n",
|
433 |
+
" pitch = 0\n",
|
434 |
+
" channel = 0\n",
|
435 |
+
"\n",
|
436 |
+
" patches = [0] * 16\n",
|
437 |
+
" patches[0] = accompaniment_MIDI_patch_number\n",
|
438 |
+
" patches[3] = melody_MIDI_patch_number\n",
|
439 |
+
"\n",
|
440 |
+
" for ss in song:\n",
|
441 |
+
"\n",
|
442 |
+
" if 0 < ss < 128:\n",
|
443 |
+
"\n",
|
444 |
+
" time += (ss * 32)\n",
|
445 |
+
"\n",
|
446 |
+
" if 128 < ss < 256:\n",
|
447 |
+
"\n",
|
448 |
+
" dur = (ss-128) * 32\n",
|
449 |
+
"\n",
|
450 |
+
" if 256 < ss < 512:\n",
|
451 |
+
"\n",
|
452 |
+
" pitch = (ss-256) % 128\n",
|
453 |
+
"\n",
|
454 |
+
" channel = (ss-256) // 128\n",
|
455 |
+
"\n",
|
456 |
+
" if channel == 1:\n",
|
457 |
+
" channel = 3\n",
|
458 |
+
" vel = 110 + (pitch % 12)\n",
|
459 |
+
" song_f.append(['note', time, dur, channel, pitch, vel, melody_MIDI_patch_number])\n",
|
460 |
+
"\n",
|
461 |
+
" else:\n",
|
462 |
+
" vel = 80 + (pitch % 12)\n",
|
463 |
+
" channel = 0\n",
|
464 |
+
" song_f.append(['note', time, dur, channel, pitch, vel, accompaniment_MIDI_patch_number])\n",
|
465 |
+
"\n",
|
466 |
+
" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,\n",
|
467 |
+
" output_signature = 'Melody2Song Seq2Seq Music Transformer',\n",
|
468 |
+
" output_file_name = '/content/Melody2Song-Seq2Seq-Music-Transformer-Composition_'+str(i),\n",
|
469 |
+
" track_name='Project Los Angeles',\n",
|
470 |
+
" list_of_MIDI_patches=patches\n",
|
471 |
+
" )\n",
|
472 |
+
" print('=' * 70)\n",
|
473 |
+
" print('Displaying resulting composition...')\n",
|
474 |
+
" print('=' * 70)\n",
|
475 |
+
"\n",
|
476 |
+
" fname = '/content/Melody2Song-Seq2Seq-Music-Transformer-Composition_'+str(i)\n",
|
477 |
+
"\n",
|
478 |
+
" if render_MIDI_to_audio:\n",
|
479 |
+
" midi_audio = midi_to_colab_audio(fname + '.mid')\n",
|
480 |
+
" display(Audio(midi_audio, rate=16000, normalize=False))\n",
|
481 |
+
"\n",
|
482 |
+
" TMIDIX.plot_ms_SONG(song_f, plot_title=fname)"
|
483 |
+
]
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"cell_type": "markdown",
|
487 |
+
"metadata": {
|
488 |
+
"id": "z87TlDTVl5cp"
|
489 |
+
},
|
490 |
+
"source": [
|
491 |
+
"# Congrats! You did it! :)"
|
492 |
+
]
|
493 |
+
}
|
494 |
+
],
|
495 |
+
"metadata": {
|
496 |
+
"accelerator": "GPU",
|
497 |
+
"colab": {
|
498 |
+
"gpuClass": "premium",
|
499 |
+
"gpuType": "L4",
|
500 |
+
"private_outputs": true,
|
501 |
+
"provenance": [],
|
502 |
+
"machine_shape": "hm"
|
503 |
+
},
|
504 |
+
"kernelspec": {
|
505 |
+
"display_name": "Python 3",
|
506 |
+
"name": "python3"
|
507 |
+
},
|
508 |
+
"language_info": {
|
509 |
+
"codemirror_mode": {
|
510 |
+
"name": "ipython",
|
511 |
+
"version": 3
|
512 |
+
},
|
513 |
+
"file_extension": ".py",
|
514 |
+
"mimetype": "text/x-python",
|
515 |
+
"name": "python",
|
516 |
+
"nbconvert_exporter": "python",
|
517 |
+
"pygments_lexer": "ipython3",
|
518 |
+
"version": "3.10.12"
|
519 |
+
}
|
520 |
+
},
|
521 |
+
"nbformat": 4,
|
522 |
+
"nbformat_minor": 0
|
523 |
+
}
|
melody2song_seq2seq_music_transformer.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Melody2Song_Seq2Seq_Music_Transformer.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1La3iHCib9tluuv4AfsIHCwt1zu0wzl8B
|
8 |
+
|
9 |
+
# Melody2Song Seq2Seq Music Transformer (ver. 1.0)
|
10 |
+
|
11 |
+
***
|
12 |
+
|
13 |
+
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
|
14 |
+
|
15 |
+
***
|
16 |
+
|
17 |
+
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
|
18 |
+
|
19 |
+
***
|
20 |
+
|
21 |
+
#### Project Los Angeles
|
22 |
+
|
23 |
+
#### Tegridy Code 2024
|
24 |
+
|
25 |
+
***
|
26 |
+
|
27 |
+
# (GPU CHECK)
|
28 |
+
"""
|
29 |
+
|
30 |
+
# @title NVIDIA GPU Check
|
31 |
+
!nvidia-smi
|
32 |
+
|
33 |
+
"""# (SETUP ENVIRONMENT)"""
|
34 |
+
|
35 |
+
# @title Install requirements
|
36 |
+
!git clone --depth 1 https://github.com/asigalov61/tegridy-tools
|
37 |
+
!pip install einops
|
38 |
+
!pip install torch-summary
|
39 |
+
!apt install fluidsynth
|
40 |
+
|
41 |
+
# Commented out IPython magic to ensure Python compatibility.
|
42 |
+
# @title Load all needed modules
|
43 |
+
|
44 |
+
print('=' * 70)
|
45 |
+
print('Loading needed modules...')
|
46 |
+
print('=' * 70)
|
47 |
+
|
48 |
+
import os
|
49 |
+
import pickle
|
50 |
+
import random
|
51 |
+
import secrets
|
52 |
+
import tqdm
|
53 |
+
import math
|
54 |
+
import torch
|
55 |
+
|
56 |
+
import matplotlib.pyplot as plt
|
57 |
+
|
58 |
+
from torchsummary import summary
|
59 |
+
|
60 |
+
# %cd /content/tegridy-tools/tegridy-tools/
|
61 |
+
|
62 |
+
import TMIDIX
|
63 |
+
from midi_to_colab_audio import midi_to_colab_audio
|
64 |
+
|
65 |
+
# %cd /content/tegridy-tools/tegridy-tools/X-Transformer
|
66 |
+
|
67 |
+
from x_transformer_1_23_2 import *
|
68 |
+
|
69 |
+
# %cd /content/
|
70 |
+
|
71 |
+
import random
|
72 |
+
|
73 |
+
from sklearn import metrics
|
74 |
+
|
75 |
+
from IPython.display import Audio, display
|
76 |
+
|
77 |
+
from huggingface_hub import hf_hub_download
|
78 |
+
|
79 |
+
from google.colab import files
|
80 |
+
|
81 |
+
print('=' * 70)
|
82 |
+
print('Done')
|
83 |
+
print('=' * 70)
|
84 |
+
print('Torch version:', torch.__version__)
|
85 |
+
print('=' * 70)
|
86 |
+
print('Enjoy! :)')
|
87 |
+
print('=' * 70)
|
88 |
+
|
89 |
+
"""# (SETUP DATA AND MODEL)"""
|
90 |
+
|
91 |
+
#@title Load Melody2Song Seq2Seq Music Trnasofmer Data and Pre-Trained Model
|
92 |
+
|
93 |
+
#@markdown Model precision option
|
94 |
+
|
95 |
+
model_precision = "bfloat16" # @param ["bfloat16", "float16"]
|
96 |
+
|
97 |
+
plot_tokens_embeddings = True # @param {type:"boolean"}
|
98 |
+
|
99 |
+
print('=' * 70)
|
100 |
+
print('Donwloading Melody2Song Seq2Seq Music Transformer Data File...')
|
101 |
+
print('=' * 70)
|
102 |
+
|
103 |
+
data_path = '/content'
|
104 |
+
|
105 |
+
if os.path.isfile(data_path+'/Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data.pickle'):
|
106 |
+
print('Data file already exists...')
|
107 |
+
|
108 |
+
else:
|
109 |
+
hf_hub_download(repo_id='asigalov61/Melody2Song-Seq2Seq-Music-Transformer',
|
110 |
+
repo_type='space',
|
111 |
+
filename='Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data.pickle',
|
112 |
+
local_dir=data_path,
|
113 |
+
)
|
114 |
+
|
115 |
+
print('=' * 70)
|
116 |
+
seed_melodies_data = TMIDIX.Tegridy_Any_Pickle_File_Reader('Melody2Song_Seq2Seq_Music_Transformer_Seed_Melodies_Data')
|
117 |
+
|
118 |
+
print('=' * 70)
|
119 |
+
print('Loading Melody2Song Seq2Seq Music Transformer Pre-Trained Model...')
|
120 |
+
print('Please wait...')
|
121 |
+
print('=' * 70)
|
122 |
+
|
123 |
+
full_path_to_models_dir = "/content"
|
124 |
+
|
125 |
+
model_checkpoint_file_name = 'Melody2Song_Seq2Seq_Music_Transformer_Trained_Model_28482_steps_0.719_loss_0.7865_acc.pth'
|
126 |
+
model_path = full_path_to_models_dir+'/'+model_checkpoint_file_name
|
127 |
+
num_layers = 24
|
128 |
+
if os.path.isfile(model_path):
|
129 |
+
print('Model already exists...')
|
130 |
+
|
131 |
+
else:
|
132 |
+
hf_hub_download(repo_id='asigalov61/Melody2Song-Seq2Seq-Music-Transformer',
|
133 |
+
repo_type='space',
|
134 |
+
filename=model_checkpoint_file_name,
|
135 |
+
local_dir=full_path_to_models_dir,
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
print('=' * 70)
|
140 |
+
print('Instantiating model...')
|
141 |
+
|
142 |
+
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
|
143 |
+
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
|
144 |
+
device_type = 'cuda'
|
145 |
+
|
146 |
+
if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
|
147 |
+
dtype = 'bfloat16'
|
148 |
+
else:
|
149 |
+
dtype = 'float16'
|
150 |
+
|
151 |
+
if model_precision == 'float16':
|
152 |
+
dtype = 'float16'
|
153 |
+
|
154 |
+
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
|
155 |
+
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
156 |
+
|
157 |
+
SEQ_LEN = 2560
|
158 |
+
PAD_IDX = 514
|
159 |
+
|
160 |
+
# instantiate the model
|
161 |
+
|
162 |
+
model = TransformerWrapper(
|
163 |
+
num_tokens = PAD_IDX+1,
|
164 |
+
max_seq_len = SEQ_LEN,
|
165 |
+
attn_layers = Decoder(dim = 1024, depth = num_layers, heads = 16, attn_flash = True)
|
166 |
+
)
|
167 |
+
|
168 |
+
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX)
|
169 |
+
|
170 |
+
model.cuda()
|
171 |
+
print('=' * 70)
|
172 |
+
|
173 |
+
print('Loading model checkpoint...')
|
174 |
+
|
175 |
+
model.load_state_dict(torch.load(model_path))
|
176 |
+
print('=' * 70)
|
177 |
+
|
178 |
+
model.eval()
|
179 |
+
|
180 |
+
print('Done!')
|
181 |
+
print('=' * 70)
|
182 |
+
|
183 |
+
print('Model will use', dtype, 'precision...')
|
184 |
+
print('=' * 70)
|
185 |
+
|
186 |
+
# Model stats
|
187 |
+
print('Model summary...')
|
188 |
+
summary(model)
|
189 |
+
|
190 |
+
if plot_tokens_embeddings:
|
191 |
+
|
192 |
+
tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()
|
193 |
+
|
194 |
+
cos_sim = metrics.pairwise_distances(
|
195 |
+
tok_emb, metric='cosine'
|
196 |
+
)
|
197 |
+
plt.figure(figsize=(7, 7))
|
198 |
+
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
|
199 |
+
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
|
200 |
+
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
|
201 |
+
plt.xlabel("Position")
|
202 |
+
plt.ylabel("Position")
|
203 |
+
plt.tight_layout()
|
204 |
+
plt.plot()
|
205 |
+
plt.savefig("/content/Melody2Song-Seq2Seq-Music-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
|
206 |
+
|
207 |
+
"""# (LOAD SEED MELODY)"""
|
208 |
+
|
209 |
+
# @title Load desired seed melody
|
210 |
+
|
211 |
+
#@markdown NOTE: If custom MIDI file is not provided, sample seed melody will be used instead
|
212 |
+
|
213 |
+
full_path_to_custom_seed_melody_MIDI_file = "/content/tegridy-tools/tegridy-tools/seed-melody.mid" # @param {type:"string"}
|
214 |
+
sample_seed_melody_number = 0 # @param {type:"slider", min:0, max:203664, step:1}
|
215 |
+
|
216 |
+
print('=' * 70)
|
217 |
+
print('Loading seed melody...')
|
218 |
+
print('=' * 70)
|
219 |
+
|
220 |
+
if full_path_to_custom_seed_melody_MIDI_file != '':
|
221 |
+
|
222 |
+
#===============================================================================
|
223 |
+
# Raw single-track ms score
|
224 |
+
|
225 |
+
raw_score = TMIDIX.midi2single_track_ms_score(full_path_to_custom_seed_melody_MIDI_file)
|
226 |
+
|
227 |
+
#===============================================================================
|
228 |
+
# Enhanced score notes
|
229 |
+
|
230 |
+
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
|
231 |
+
|
232 |
+
#===============================================================================
|
233 |
+
# Augmented enhanced score notes
|
234 |
+
|
235 |
+
escore_notes = TMIDIX.recalculate_score_timings(TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32))
|
236 |
+
|
237 |
+
cscore = TMIDIX.chordify_score([1000, escore_notes])
|
238 |
+
|
239 |
+
fixed_mel_score = TMIDIX.fix_monophonic_score_durations([c[0] for c in cscore])
|
240 |
+
|
241 |
+
melody = []
|
242 |
+
|
243 |
+
pe = fixed_mel_score[0]
|
244 |
+
|
245 |
+
for s in fixed_mel_score:
|
246 |
+
|
247 |
+
dtime = max(0, min(127, s[1]-pe[1]))
|
248 |
+
dur = max(1, min(127, s[2]))
|
249 |
+
ptc = max(1, min(127, s[4]))
|
250 |
+
|
251 |
+
chan = 1
|
252 |
+
|
253 |
+
melody.extend([dtime, dur+128, (128 * chan)+ptc+256])
|
254 |
+
|
255 |
+
pe = s
|
256 |
+
|
257 |
+
if len(melody) >= 192:
|
258 |
+
melody = [512] + melody[:192] + [513]
|
259 |
+
|
260 |
+
else:
|
261 |
+
mult = math.ceil(192 / len(melody))
|
262 |
+
melody = melody * mult
|
263 |
+
melody = [512] + melody[:192] + [513]
|
264 |
+
|
265 |
+
print('Loaded custom MIDI melody:', full_path_to_custom_seed_melody_MIDI_file)
|
266 |
+
print('=' * 70)
|
267 |
+
|
268 |
+
else:
|
269 |
+
melody = seed_melodies_data[sample_seed_melody_number]
|
270 |
+
print('Loaded sample seed melody #', sample_seed_melody_number)
|
271 |
+
print('=' * 70)
|
272 |
+
|
273 |
+
print('Sample melody INTs:', melody[:10])
|
274 |
+
print('=' * 70)
|
275 |
+
print('Done!')
|
276 |
+
print('=' * 70)
|
277 |
+
|
278 |
+
"""# (GENERATE)"""
|
279 |
+
|
280 |
+
# @title Generate song from melody
|
281 |
+
|
282 |
+
melody_MIDI_patch_number = 40 # @param {type:"slider", min:0, max:127, step:1}
|
283 |
+
accompaniment_MIDI_patch_number = 0 # @param {type:"slider", min:0, max:127, step:1}
|
284 |
+
number_of_tokens_to_generate = 900 # @param {type:"slider", min:15, max:2354, step:3}
|
285 |
+
number_of_batches_to_generate = 4 # @param {type:"slider", min:1, max:16, step:1}
|
286 |
+
top_k_value = 25 # @param {type:"slider", min:1, max:50, step:1}
|
287 |
+
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
|
288 |
+
render_MIDI_to_audio = True # @param {type:"boolean"}
|
289 |
+
|
290 |
+
print('=' * 70)
|
291 |
+
print('Melody2Song Seq1Seq Music Transformer Model Generator')
|
292 |
+
print('=' * 70)
|
293 |
+
|
294 |
+
print('Generating...')
|
295 |
+
print('=' * 70)
|
296 |
+
|
297 |
+
model.eval()
|
298 |
+
|
299 |
+
torch.cuda.empty_cache()
|
300 |
+
|
301 |
+
x = (torch.tensor([melody] * number_of_batches_to_generate, dtype=torch.long, device='cuda'))
|
302 |
+
|
303 |
+
with ctx:
|
304 |
+
out = model.generate(x,
|
305 |
+
number_of_tokens_to_generate,
|
306 |
+
filter_logits_fn=top_k,
|
307 |
+
filter_kwargs={'k': top_k_value},
|
308 |
+
temperature=0.9,
|
309 |
+
return_prime=False,
|
310 |
+
verbose=True)
|
311 |
+
|
312 |
+
output = out.tolist()
|
313 |
+
|
314 |
+
print('=' * 70)
|
315 |
+
print('Done!')
|
316 |
+
print('=' * 70)
|
317 |
+
|
318 |
+
#======================================================================
|
319 |
+
print('Rendering results...')
|
320 |
+
|
321 |
+
for i in range(number_of_batches_to_generate):
|
322 |
+
|
323 |
+
print('=' * 70)
|
324 |
+
print('Batch #', i)
|
325 |
+
print('=' * 70)
|
326 |
+
|
327 |
+
out1 = output[i]
|
328 |
+
|
329 |
+
print('Sample INTs', out1[:12])
|
330 |
+
print('=' * 70)
|
331 |
+
|
332 |
+
if len(out1) != 0:
|
333 |
+
|
334 |
+
song = out1
|
335 |
+
song_f = []
|
336 |
+
|
337 |
+
time = 0
|
338 |
+
dur = 0
|
339 |
+
vel = 90
|
340 |
+
pitch = 0
|
341 |
+
channel = 0
|
342 |
+
|
343 |
+
patches = [0] * 16
|
344 |
+
patches[0] = accompaniment_MIDI_patch_number
|
345 |
+
patches[3] = melody_MIDI_patch_number
|
346 |
+
|
347 |
+
for ss in song:
|
348 |
+
|
349 |
+
if 0 < ss < 128:
|
350 |
+
|
351 |
+
time += (ss * 32)
|
352 |
+
|
353 |
+
if 128 < ss < 256:
|
354 |
+
|
355 |
+
dur = (ss-128) * 32
|
356 |
+
|
357 |
+
if 256 < ss < 512:
|
358 |
+
|
359 |
+
pitch = (ss-256) % 128
|
360 |
+
|
361 |
+
channel = (ss-256) // 128
|
362 |
+
|
363 |
+
if channel == 1:
|
364 |
+
channel = 3
|
365 |
+
vel = 110 + (pitch % 12)
|
366 |
+
song_f.append(['note', time, dur, channel, pitch, vel, melody_MIDI_patch_number])
|
367 |
+
|
368 |
+
else:
|
369 |
+
vel = 80 + (pitch % 12)
|
370 |
+
channel = 0
|
371 |
+
song_f.append(['note', time, dur, channel, pitch, vel, accompaniment_MIDI_patch_number])
|
372 |
+
|
373 |
+
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
374 |
+
output_signature = 'Melody2Song Seq2Seq Music Transformer',
|
375 |
+
output_file_name = '/content/Melody2Song-Seq2Seq-Music-Transformer-Composition_'+str(i),
|
376 |
+
track_name='Project Los Angeles',
|
377 |
+
list_of_MIDI_patches=patches
|
378 |
+
)
|
379 |
+
print('=' * 70)
|
380 |
+
print('Displaying resulting composition...')
|
381 |
+
print('=' * 70)
|
382 |
+
|
383 |
+
fname = '/content/Melody2Song-Seq2Seq-Music-Transformer-Composition_'+str(i)
|
384 |
+
|
385 |
+
if render_MIDI_to_audio:
|
386 |
+
midi_audio = midi_to_colab_audio(fname + '.mid')
|
387 |
+
display(Audio(midi_audio, rate=16000, normalize=False))
|
388 |
+
|
389 |
+
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
|
390 |
+
|
391 |
+
"""# Congrats! You did it! :)"""
|