asigalov61
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -23,12 +23,9 @@ import matplotlib.pyplot as plt
|
|
23 |
in_space = os.getenv("SYSTEM") == "spaces"
|
24 |
|
25 |
# =================================================================================================
|
26 |
-
|
27 |
@spaces.GPU
|
28 |
-
def
|
29 |
-
print('=' * 70)
|
30 |
-
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
31 |
-
start_time = reqtime.time()
|
32 |
|
33 |
print('Loading model...')
|
34 |
|
@@ -70,6 +67,48 @@ def ClassifyMIDI(input_midi):
|
|
70 |
|
71 |
#==================================================================
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
print('=' * 70)
|
74 |
|
75 |
fn = os.path.basename(input_midi.name)
|
@@ -158,39 +197,8 @@ def ClassifyMIDI(input_midi):
|
|
158 |
classification_summary_string += 'Number of notes in all composition chunks: ' + str(len(input_data) * 340) + '\n'
|
159 |
classification_summary_string += '=' * 70
|
160 |
classification_summary_string += '\n'
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
# @markdown NOTE: You can increase the number of batches on high-ram GPUs for better classification
|
165 |
-
|
166 |
-
print('=' * 70)
|
167 |
-
print('Annotated MIDI Dataset Classifier')
|
168 |
-
print('=' * 70)
|
169 |
-
print('Classifying...')
|
170 |
-
|
171 |
-
torch.cuda.empty_cache()
|
172 |
-
|
173 |
-
model.eval()
|
174 |
-
|
175 |
-
results = []
|
176 |
-
|
177 |
-
for input in input_data:
|
178 |
-
|
179 |
-
x = torch.tensor([input[:1022]] * number_of_batches, dtype=torch.long, device='cuda')
|
180 |
-
|
181 |
-
with ctx:
|
182 |
-
out = model.generate(x,
|
183 |
-
1,
|
184 |
-
temperature=0.3,
|
185 |
-
return_prime=False,
|
186 |
-
verbose=False)
|
187 |
-
|
188 |
-
y = out.tolist()
|
189 |
-
|
190 |
-
output = [l[0] for l in y]
|
191 |
-
result = mode(output)
|
192 |
-
|
193 |
-
results.append(result)
|
194 |
|
195 |
all_results_labels = [classifier_labels[0][r-384] for r in results]
|
196 |
final_result = mode(results)
|
|
|
23 |
in_space = os.getenv("SYSTEM") == "spaces"
|
24 |
|
25 |
# =================================================================================================
|
26 |
+
|
27 |
@spaces.GPU
|
28 |
+
def classify_GPU(input_data):
|
|
|
|
|
|
|
29 |
|
30 |
print('Loading model...')
|
31 |
|
|
|
67 |
|
68 |
#==================================================================
|
69 |
|
70 |
+
number_of_batches = 100 # @param {type:"slider", min:1, max:100, step:1}
|
71 |
+
|
72 |
+
# @markdown NOTE: You can increase the number of batches on high-ram GPUs for better classification
|
73 |
+
|
74 |
+
print('=' * 70)
|
75 |
+
print('Annotated MIDI Dataset Classifier')
|
76 |
+
print('=' * 70)
|
77 |
+
print('Classifying...')
|
78 |
+
|
79 |
+
torch.cuda.empty_cache()
|
80 |
+
|
81 |
+
model.eval()
|
82 |
+
|
83 |
+
results = []
|
84 |
+
|
85 |
+
for input in input_data:
|
86 |
+
|
87 |
+
x = torch.tensor([input[:1022]] * number_of_batches, dtype=torch.long, device='cuda')
|
88 |
+
|
89 |
+
with ctx:
|
90 |
+
out = model.generate(x,
|
91 |
+
1,
|
92 |
+
temperature=0.3,
|
93 |
+
return_prime=False,
|
94 |
+
verbose=False)
|
95 |
+
|
96 |
+
y = out.tolist()
|
97 |
+
|
98 |
+
output = [l[0] for l in y]
|
99 |
+
result = mode(output)
|
100 |
+
|
101 |
+
results.append(result)
|
102 |
+
|
103 |
+
return results
|
104 |
+
|
105 |
+
# =================================================================================================
|
106 |
+
|
107 |
+
def ClassifyMIDI(input_midi):
|
108 |
+
print('=' * 70)
|
109 |
+
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
110 |
+
start_time = reqtime.time()
|
111 |
+
|
112 |
print('=' * 70)
|
113 |
|
114 |
fn = os.path.basename(input_midi.name)
|
|
|
197 |
classification_summary_string += 'Number of notes in all composition chunks: ' + str(len(input_data) * 340) + '\n'
|
198 |
classification_summary_string += '=' * 70
|
199 |
classification_summary_string += '\n'
|
200 |
+
|
201 |
+
results = classify_GPU(input_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
all_results_labels = [classifier_labels[0][r-384] for r in results]
|
204 |
final_result = mode(results)
|