# https://huggingface.co/spaces/asigalov61/Ultimate-MIDI-Classifier import os import time as reqtime import datetime from pytz import timezone import torch import spaces import gradio as gr from x_transformer_1_23_2 import * import random import re from statistics import mode import TMIDIX # ================================================================================================= @spaces.GPU def ClassifyMIDI(input_midi, input_sampling_resolution): print('=' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = reqtime.time() print('=' * 70) fn = os.path.basename(input_midi.name) fn1 = fn.split('.')[0] print('=' * 70) print('Ultimate MIDI Classifier') print('=' * 70) print('Input MIDI file name:', fn) print('=' * 70) print('Loading MIDI file...') midi_name = fn raw_score = TMIDIX.midi2single_track_ms_score(open(input_midi.name, 'rb').read()) escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] #=============================================================================== # Augmented enhanced score notes escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) escore_notes = [e for e in escore_notes if e[6] < 80 or e[6] == 128] #======================================================= # Augmentation #======================================================= # FINAL PROCESSING melody_chords = [] #======================================================= # MAIN PROCESSING CYCLE #======================================================= pe = escore_notes[0] pitches = [] notes_counter = 0 for e in escore_notes: #======================================================= # Timings... delta_time = max(0, min(127, e[1]-pe[1])) if delta_time != 0: pitches = [] # Durations and channels dur = max(1, min(127, e[2])) # Patches pat = max(0, min(128, e[6])) # Pitches if pat == 128: ptc = max(1, min(127, e[4]))+128 else: ptc = max(1, min(127, e[4])) #======================================================= # FINAL NOTE SEQ # Writing final note synchronously if ptc not in pitches: melody_chords.extend([delta_time, dur+128, ptc+256]) pitches.append(ptc) notes_counter += 1 pe = e #============================================================== print('Done!') print('=' * 70) print('Sampling score...') chunk_size = 1020 score = melody_chords input_data = [] for i in range(0, len(score)-chunk_size, chunk_size // input_sampling_resolution): schunk = score[i:i+chunk_size] if len(schunk) == chunk_size: td = [937] td.extend(schunk) td.extend([938]) input_data.append(td) print('Done!') print('=' * 70) #============================================================== classification_summary_string = '=' * 70 classification_summary_string += '\n' samples_overlap = 340 - chunk_size // input_sampling_resolution // 3 print('Composition has', notes_counter, 'notes') print('=' * 70) print('Composition was split into' , len(input_data), 'samples', 'of 340 notes each with', samples_overlap, 'notes overlap') print('=' * 70) print('Number of notes in all composition samples:', len(input_data) * 340) print('=' * 70) classification_summary_string += 'Composition has ' + str(notes_counter) + ' notes\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' classification_summary_string += 'Composition was split into ' + 'samples of 340 notes each with ' + str(samples_overlap) + ' notes overlap\n' classification_summary_string += 'Number of notes in all composition samples: ' + str(len(input_data) * 340) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' print('Loading model...') SEQ_LEN = 1026 PAD_IDX = 940 DEVICE = 'cuda' # 'cuda' # instantiate the model model = TransformerWrapper( num_tokens = PAD_IDX+1, max_seq_len = SEQ_LEN, attn_layers = Decoder(dim = 1024, depth = 24, heads = 32, attn_flash = True) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) model = torch.nn.DataParallel(model) model.to(DEVICE) print('=' * 70) print('Loading model checkpoint...') model.load_state_dict( torch.load('Ultimate_MIDI_Classifier_Trained_Model_29886_steps_0.556_loss_0.8339_acc.pth', map_location=DEVICE)) print('=' * 70) if DEVICE == 'cpu': dtype = torch.bfloat16 else: dtype = torch.bfloat16 ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) print('Done!') print('=' * 70) #================================================================== print('=' * 70) print('Ultimate MIDI Classifier') print('=' * 70) print('Classifying...') torch.cuda.empty_cache() model.eval() artist_results = [] song_results = [] results = [] for input in input_data: x = torch.tensor(input[:1022], dtype=torch.long, device='cuda') with ctx: out = model.module.generate(x, 2, filter_logits_fn=top_k, filter_kwargs={'k': 1}, temperature=0.9, return_prime=False, verbose=False) result = tuple(out[0].tolist()) results.append(result) final_result = mode(results) print('=' * 70) print('Done!') print('=' * 70) result_toks = [final_result[0]-512, final_result[1]-512] mc_song_artist = song_artist_tokens_to_song_artist(result_toks) gidx = genre_labels_fnames.index(mc_song_artist) mc_genre = genre_labels[gidx][1] print('Most common classification genre label:', mc_genre) print('Most common classification song-artist label:', mc_song_artist) print('Most common song-artist classification label ratio:' , results.count(final_result) / len(results)) print('=' * 70) classification_summary_string += 'Most common classification genre label: ' + str(mc_genre) + '\n' classification_summary_string += 'Most common classification song-artist label: ' + str(mc_song_artist) + '\n' classification_summary_string += 'Most common song-artist classification label ratio: '+ str(results.count(final_result) / len(results)) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' print('All classification labels summary:') print('=' * 70) all_artists_labels = [] for i, res in enumerate(results): result_toks = [res[0]-512, res[1]-512] song_artist = song_artist_tokens_to_song_artist(result_toks) gidx = genre_labels_fnames.index(song_artist) genre = genre_labels[gidx][1] print('Notes', i*samples_overlap, '-', (i*samples_overlap)+340, '===', genre, '---', song_artist) classification_summary_string += 'Notes ' + str(i*samples_overlap) + ' - ' + str((i*samples_overlap)+340) + ' === ' + str(genre) + ' --- ' + str(song_artist) + '\n' artist_label = str_strip_artist(song_artist.split(' --- ')[1]) all_artists_labels.append(artist_label) classification_summary_string += '=' * 70 classification_summary_string += '\n' print('=' * 70) mode_artist_label = mode(all_artists_labels) mode_artist_label_count = all_artists_labels.count(mode_artist_label) print('Aggregated artist classification label:', mode_artist_label) print('Aggregated artist classification label ratio:', mode_artist_label_count / len(all_artists_labels)) classification_summary_string += 'Aggregated artist classification label: ' + str(mode_artist_label) + '\n' classification_summary_string += 'Aggregated artist classification label ratio: ' + str(mode_artist_label_count / len(all_artists_labels)) + '\n' classification_summary_string += '=' * 70 classification_summary_string += '\n' print('=' * 70) print('Done!') print('=' * 70) #======================================================== print('-' * 70) print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (reqtime.time() - start_time), 'sec') return classification_summary_string # ================================================================================================= if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) #=============================================================================== # Helper functions #=============================================================================== def str_strip_song(string): if string is not None: string = string.replace('-', ' ').replace('_', ' ').replace('=', ' ') str1 = re.compile('[^a-zA-Z ]').sub('', string) return re.sub(' +', ' ', str1).strip().title() else: return '' def str_strip_artist(string): if string is not None: string = string.replace('-', ' ').replace('_', ' ').replace('=', ' ') str1 = re.compile('[^0-9a-zA-Z ]').sub('', string) return re.sub(' +', ' ', str1).strip().title() else: return '' def song_artist_to_song_artist_tokens(file_name): idx = classifier_labels.index(file_name) tok1 = idx // 424 tok2 = idx % 424 return [tok1, tok2] def song_artist_tokens_to_song_artist(file_name_tokens): tok1 = file_name_tokens[0] tok2 = file_name_tokens[1] idx = (tok1 * 424) + tok2 return classifier_labels[idx] #=============================================================================== print('=' * 70) print('Loading Ultimate MIDI Classifier labels...') print('=' * 70) classifier_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Ultimate_MIDI_Classifier_Song_Artist_Labels') print('=' * 70) genre_labels = TMIDIX.Tegridy_Any_Pickle_File_Reader('Ultimate_MIDI_Classifier_Music_Genre_Labels') genre_labels_fnames = [f[0] for f in genre_labels] print('=' * 70) print('Done!') print('=' * 70) app = gr.Blocks() with app: gr.Markdown("

Ultimate MIDI Classifier

") gr.Markdown("

Classify absolutely any MIDI by genre, song and artist

") gr.Markdown( "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-MIDI-Classifier&style=flat)\n\n" "This is a demo for Ultimate MIDI Classifier\n\n" "Check out [Ultimate MIDI Classifier](https://github.com/asigalov61/Ultimate-MIDI-Classifier) on GitHub!\n\n" "[Open In Colab]" "(https://colab.research.google.com/github/asigalov61/Ultimate-MIDI-Classifier/blob/main/Ultimate_MIDI_Classifier.ipynb)" " for all options, faster execution and endless classification" ) gr.Markdown("## Upload any MIDI to classify") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) input_sampling_resolution = gr.Slider(1, 5, value=2, step=1, label="Classification sampling resolution") run_btn = gr.Button("classify", variant="primary") gr.Markdown("## Classification results") output_midi_cls_summary = gr.Textbox(label="MIDI classification results") run_event = run_btn.click(ClassifyMIDI, [input_midi, input_sampling_resolution], [output_midi_cls_summary]) gr.Examples( [["Honesty.kar", 2], ["House Of The Rising Sun.mid", 2], ["Nothing Else Matters.kar", 2], ["Sharing The Night Together.kar", 2] ], [input_midi, input_sampling_resolution], [output_midi_cls_summary], ClassifyMIDI, cache_examples=True, ) app.queue().launch()