asigalov61's picture
Update app.py
61daf8d verified
#==================================================================
# https://huggingface.co/spaces/asigalov61/Popular-Hook-Transformer
#==================================================================
import time as reqtime
import datetime
from pytz import timezone
import statistics
import re
import tqdm
import gradio as gr
import spaces
from x_transformer_1_23_2 import *
import random
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
#=====================================================================================
print('=' * 70)
print('Popular Hook Transformer')
print('=' * 70)
print('Loading Popular Hook Transformer training data...')
print('=' * 70)
melody_chords_f = TMIDIX.Tegridy_Any_Pickle_File_Reader('Popular_Hook_Transformer_Training_Data.pickle')
print('=' * 70)
#====================================================================================
SEQ_LEN = 512
PAD_IDX = 918
DEVICE = 'cpu'
#====================================================================================
def str_strip(string):
return re.sub(r'[^A-Za-z-]+', '', string).rstrip('-')
def mode_time(seq):
return statistics.mode([t for t in seq if 0 < t < 128])
def mode_dur(seq):
return statistics.mode([t-128 for t in seq if 128 < t < 256])
def mode_pitch(seq):
return statistics.mode([t % 128 for t in seq if 256 < t < 512])
sections_dict = sorted(set([str_strip(s[2]).rstrip('-') for s in melody_chords_f]))
train_data = []
for m in tqdm.tqdm(melody_chords_f):
if 64 < len(m[5]) < 506:
for tv in range(-3, 3):
section = str_strip(m[2])
section_tok = sections_dict.index(section)
score = [t+tv if 256 < t < 512 else t for t in m[5]]
seq = [916] + [section_tok+512, mode_time(score)+532, mode_dur(score)+660, mode_pitch(score)+tv+788]
seq += score
seq += [917]
seq = seq + [PAD_IDX] * (SEQ_LEN - len(seq))
train_data.append(seq)
#====================================================================================
print('Done!')
print('=' * 70)
print('All data is good:', len(max(train_data, key=len)) == len(min(train_data, key=len)))
print('=' * 70)
print('Randomizing training data...')
random.shuffle(train_data)
print('Done!')
print('=' * 70)
print('Total length of training data:', len(train_data))
print('=' * 70)
#====================================================================================
print('Loading Popular Hook Transformer pre-trained model...')
print('=' * 70)
print('Instantiating model...')
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_path = 'Popular_Hook_Transformer_Small_Trained_Model_10869_steps_0.2308_loss_0.9252_acc.pth'
model.load_state_dict(torch.load(model_path, map_location='cpu'))
print('Done!')
print('=' * 70)
#====================================================================================
@spaces.GPU
def Generate_POP_Section(input_comp_section,
input_mode_time,
input_mode_dur,
input_mode_ptc,
input_model_temp,
input_model_top_p
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Requested settings:')
print('-' * 70)
print('Composition section:', input_comp_section)
print('Mode time:', input_mode_time)
print('Mode duration:', input_mode_dur)
print('Mode pitch:', input_mode_ptc)
print('Model temperature:', input_model_temp)
print('Model top p:', input_model_top_p)
print('=' * 70)
#===============================================================================
print('Generating...')
if input_comp_section == 'random':
seq = [916]
else:
seq = [916, sections_dict.index(input_comp_section)+512]
input_seq = [input_mode_time, input_mode_dur, input_mode_ptc]
input_seq_toks = [input_mode_time+532, input_mode_dur+660, input_mode_ptc+788]
if 0 in input_seq:
input_seq = input_seq_toks[:input_seq.index(0)]
else:
input_seq = input_seq_toks
seq += input_seq
model.to(DEVICE)
model.eval()
x = torch.LongTensor(seq).to(DEVICE)
with torch.amp.autocast(device_type=DEVICE, dtype=torch.bfloat16):
out = model.generate(x,
512-len(seq),
temperature=input_model_temp,
filter_logits_fn=top_p,
filter_kwargs={'thres': input_model_top_p},
eos_token=917,
return_prime=True,
verbose=True)
song = out.tolist()[0]
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
comp_section = sections_dict[song[1]-512]
comp_mode_time = song[2]-532
comp_mode_dur = song[3]-660
comp_mode_ptc = song[4]-788
comp_summary = ''
comp_summary += 'Generated section: ' + str(comp_section) + '\n'
comp_summary += 'Generated mode time: ' + str(comp_mode_time) + '\n'
comp_summary += 'Generated mode duration: ' + str(comp_mode_dur) + '\n'
comp_summary += 'Generated mode pitch: ' + str(comp_mode_ptc)
print('Sample INTs', song[:5])
print('=' * 70)
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 <= ss < 256:
dur = (ss-128)* 32
if 256 <= ss < 512:
pitch = (ss-256) % 128
cha = (ss-256) // 128
if cha == 0:
channel = 3
vel = 110+(pitch % 12)
patch = 40
else:
channel = 0
vel = max(40, pitch)
patch = 0
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
fn1 = 'Popular-Hook-Transformer-Composition'
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Popular Hook Transformer',
output_file_name = fn1,
track_name='Project Los Angeles'
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', comp_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, comp_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Popular Hook Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique POP music sections</h1>")
gr.Markdown(
"This is a demo for popular-hook MIDI Dataset\n\n"
"Check out [popular-hook](https://huggingface.co/datasets/NEXTLab-ZJU/popular-hook) on Hugging Face!\n\n"
)
gr.Markdown("## Select POP composition section to generate:")
input_comp_section = gr.Dropdown(sections_dict + ['random'], label="Composition section", value='random')
gr.Markdown("## Select generation options:")
input_mode_time = gr.Slider(0, 127, value=0, step=1, label="Composition mode time")
input_mode_dur = gr.Slider(0, 127, value=0, step=1, label="Composition mode dur")
input_mode_ptc = gr.Slider(0, 127, value=0, step=1, label="Composition mode pitch")
input_model_temp = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
input_model_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
run_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Output results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(Generate_POP_Section, [input_comp_section,
input_mode_time,
input_mode_dur,
input_mode_ptc,
input_model_temp,
input_model_top_p
],
[output_midi_title,
output_midi_summary,
output_midi,
output_audio,
output_plot]
)
gr.Examples([["intro", 10, 15, 72, 0.9, 0.96],
["chorus", 10, 15, 72, 0.9, 0.96],
["bridge", 10, 15, 72, 0.9, 0.96]
],
[input_comp_section,
input_mode_time,
input_mode_dur,
input_mode_ptc,
input_model_temp,
input_model_top_p
],
[output_midi_title,
output_midi_summary,
output_midi,
output_audio,
output_plot],
Generate_POP_Section,
cache_examples=True,
cache_mode='eager'
)
app.queue().launch()