Spaces:
Sleeping
Sleeping
#================================================================== | |
# https://huggingface.co/spaces/asigalov61/Popular-Hook-Transformer | |
#================================================================== | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
import statistics | |
import re | |
import tqdm | |
import gradio as gr | |
import spaces | |
from x_transformer_1_23_2 import * | |
import random | |
from midi_to_colab_audio import midi_to_colab_audio | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
#===================================================================================== | |
print('=' * 70) | |
print('Popular Hook Transformer') | |
print('=' * 70) | |
print('Loading Popular Hook Transformer training data...') | |
print('=' * 70) | |
melody_chords_f = TMIDIX.Tegridy_Any_Pickle_File_Reader('Popular_Hook_Transformer_Training_Data.pickle') | |
print('=' * 70) | |
#==================================================================================== | |
SEQ_LEN = 512 | |
PAD_IDX = 918 | |
DEVICE = 'cpu' | |
#==================================================================================== | |
def str_strip(string): | |
return re.sub(r'[^A-Za-z-]+', '', string).rstrip('-') | |
def mode_time(seq): | |
return statistics.mode([t for t in seq if 0 < t < 128]) | |
def mode_dur(seq): | |
return statistics.mode([t-128 for t in seq if 128 < t < 256]) | |
def mode_pitch(seq): | |
return statistics.mode([t % 128 for t in seq if 256 < t < 512]) | |
sections_dict = sorted(set([str_strip(s[2]).rstrip('-') for s in melody_chords_f])) | |
train_data = [] | |
for m in tqdm.tqdm(melody_chords_f): | |
if 64 < len(m[5]) < 506: | |
for tv in range(-3, 3): | |
section = str_strip(m[2]) | |
section_tok = sections_dict.index(section) | |
score = [t+tv if 256 < t < 512 else t for t in m[5]] | |
seq = [916] + [section_tok+512, mode_time(score)+532, mode_dur(score)+660, mode_pitch(score)+tv+788] | |
seq += score | |
seq += [917] | |
seq = seq + [PAD_IDX] * (SEQ_LEN - len(seq)) | |
train_data.append(seq) | |
#==================================================================================== | |
print('Done!') | |
print('=' * 70) | |
print('All data is good:', len(max(train_data, key=len)) == len(min(train_data, key=len))) | |
print('=' * 70) | |
print('Randomizing training data...') | |
random.shuffle(train_data) | |
print('Done!') | |
print('=' * 70) | |
print('Total length of training data:', len(train_data)) | |
print('=' * 70) | |
#==================================================================================== | |
print('Loading Popular Hook Transformer pre-trained model...') | |
print('=' * 70) | |
print('Instantiating model...') | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 1024, | |
depth = 4, | |
heads = 32, | |
rotary_pos_emb = True, | |
attn_flash = True | |
) | |
) | |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model_path = 'Popular_Hook_Transformer_Small_Trained_Model_10869_steps_0.2308_loss_0.9252_acc.pth' | |
model.load_state_dict(torch.load(model_path, map_location='cpu')) | |
print('Done!') | |
print('=' * 70) | |
#==================================================================================== | |
def Generate_POP_Section(input_comp_section, | |
input_mode_time, | |
input_mode_dur, | |
input_mode_ptc, | |
input_model_temp, | |
input_model_top_p | |
): | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('=' * 70) | |
print('Requested settings:') | |
print('-' * 70) | |
print('Composition section:', input_comp_section) | |
print('Mode time:', input_mode_time) | |
print('Mode duration:', input_mode_dur) | |
print('Mode pitch:', input_mode_ptc) | |
print('Model temperature:', input_model_temp) | |
print('Model top p:', input_model_top_p) | |
print('=' * 70) | |
#=============================================================================== | |
print('Generating...') | |
if input_comp_section == 'random': | |
seq = [916] | |
else: | |
seq = [916, sections_dict.index(input_comp_section)+512] | |
input_seq = [input_mode_time, input_mode_dur, input_mode_ptc] | |
input_seq_toks = [input_mode_time+532, input_mode_dur+660, input_mode_ptc+788] | |
if 0 in input_seq: | |
input_seq = input_seq_toks[:input_seq.index(0)] | |
else: | |
input_seq = input_seq_toks | |
seq += input_seq | |
model.to(DEVICE) | |
model.eval() | |
x = torch.LongTensor(seq).to(DEVICE) | |
with torch.amp.autocast(device_type=DEVICE, dtype=torch.bfloat16): | |
out = model.generate(x, | |
512-len(seq), | |
temperature=input_model_temp, | |
filter_logits_fn=top_p, | |
filter_kwargs={'thres': input_model_top_p}, | |
eos_token=917, | |
return_prime=True, | |
verbose=True) | |
song = out.tolist()[0] | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
print('=' * 70) | |
comp_section = sections_dict[song[1]-512] | |
comp_mode_time = song[2]-532 | |
comp_mode_dur = song[3]-660 | |
comp_mode_ptc = song[4]-788 | |
comp_summary = '' | |
comp_summary += 'Generated section: ' + str(comp_section) + '\n' | |
comp_summary += 'Generated mode time: ' + str(comp_mode_time) + '\n' | |
comp_summary += 'Generated mode duration: ' + str(comp_mode_dur) + '\n' | |
comp_summary += 'Generated mode pitch: ' + str(comp_mode_ptc) | |
print('Sample INTs', song[:5]) | |
print('=' * 70) | |
song_f = [] | |
time = 0 | |
dur = 0 | |
vel = 90 | |
pitch = 0 | |
channel = 0 | |
for ss in song: | |
if 0 <= ss < 128: | |
time += ss * 32 | |
if 128 <= ss < 256: | |
dur = (ss-128)* 32 | |
if 256 <= ss < 512: | |
pitch = (ss-256) % 128 | |
cha = (ss-256) // 128 | |
if cha == 0: | |
channel = 3 | |
vel = 110+(pitch % 12) | |
patch = 40 | |
else: | |
channel = 0 | |
vel = max(40, pitch) | |
patch = 0 | |
song_f.append(['note', time, dur, channel, pitch, vel, patch ]) | |
fn1 = 'Popular-Hook-Transformer-Composition' | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
output_signature = 'Popular Hook Transformer', | |
output_file_name = fn1, | |
track_name='Project Los Angeles' | |
) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=soundfont, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_midi_title = str(fn1) | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI title:', output_midi_title) | |
print('Output MIDI summary:', comp_summary) | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_midi_title, comp_summary, output_midi, output_audio, output_plot | |
# ================================================================================================= | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Popular Hook Transformer</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique POP music sections</h1>") | |
gr.Markdown( | |
"This is a demo for popular-hook MIDI Dataset\n\n" | |
"Check out [popular-hook](https://huggingface.co/datasets/NEXTLab-ZJU/popular-hook) on Hugging Face!\n\n" | |
) | |
gr.Markdown("## Select POP composition section to generate:") | |
input_comp_section = gr.Dropdown(sections_dict + ['random'], label="Composition section", value='random') | |
gr.Markdown("## Select generation options:") | |
input_mode_time = gr.Slider(0, 127, value=0, step=1, label="Composition mode time") | |
input_mode_dur = gr.Slider(0, 127, value=0, step=1, label="Composition mode dur") | |
input_mode_ptc = gr.Slider(0, 127, value=0, step=1, label="Composition mode pitch") | |
input_model_temp = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") | |
input_model_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value") | |
run_btn = gr.Button("Generate", variant="primary") | |
gr.Markdown("## Output results") | |
output_midi_title = gr.Textbox(label="Output MIDI title") | |
output_midi_summary = gr.Textbox(label="Output MIDI summary") | |
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio") | |
output_plot = gr.Plot(label="Output MIDI score plot") | |
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
run_event = run_btn.click(Generate_POP_Section, [input_comp_section, | |
input_mode_time, | |
input_mode_dur, | |
input_mode_ptc, | |
input_model_temp, | |
input_model_top_p | |
], | |
[output_midi_title, | |
output_midi_summary, | |
output_midi, | |
output_audio, | |
output_plot] | |
) | |
gr.Examples([["intro", 10, 15, 72, 0.9, 0.96], | |
["chorus", 10, 15, 72, 0.9, 0.96], | |
["bridge", 10, 15, 72, 0.9, 0.96] | |
], | |
[input_comp_section, | |
input_mode_time, | |
input_mode_dur, | |
input_mode_ptc, | |
input_model_temp, | |
input_model_top_p | |
], | |
[output_midi_title, | |
output_midi_summary, | |
output_midi, | |
output_audio, | |
output_plot], | |
Generate_POP_Section, | |
cache_examples=True, | |
cache_mode='eager' | |
) | |
app.queue().launch() |