asigalov61's picture
Upload 20 files
fc1422a verified
raw
history blame
12.8 kB
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateAccompaniment(input_midi, input_num_tokens, input_acc_type):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 8192 # Models seq len
PAD_IDX = 767 # Models pad index
DEVICE = 'cuda' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 2048, depth = 4, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Ultimate_Accompaniment_Transformer_Small_Improved_Trained_Model_13649_steps_0.3229_loss_0.898_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.float16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
fn = os.path.basename(input_midi.name)
fn1 = fn.split('.')[0]
input_num_tokens = max(4, min(128, input_num_tokens))
print('-' * 70)
print('Input file name:', fn)
print('Req num toks:', input_num_tokens)
print('Force acc:', input_acc_type)
print('-' * 70)
#===============================================================================
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name)
#===============================================================================
# Enhanced score notes
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
escore_notes = [e for e in escore_notes if e[3] != 9]
if len(escore_notes) > 0:
#=======================================================
# PRE-PROCESSING
#===============================================================================
# Augmented enhanced score notes
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32)
cscore = TMIDIX.chordify_score([1000, escore_notes])
melody = TMIDIX.fix_monophonic_score_durations([sorted(e, key=lambda x: x[4], reverse=True)[0] for e in cscore])
#=======================================================
# FINAL PROCESSING
melody_chords = []
#=======================================================
# MAIN PROCESSING CYCLE
#=======================================================
pe = cscore[0][0]
mpe = melody[0]
midx = 1
for i, c in enumerate(cscore):
c.sort(key=lambda x: (x[3], x[4]), reverse=True)
# Next melody note
if midx < len(melody):
# Time
mtime = melody[midx][1]-mpe[1]
mdur = melody[midx][2]
mdelta_time = max(0, min(127, mtime))
# Durations
mdur = max(0, min(127, mdur))
# Pitch
mptc = melody[midx][4]
else:
mtime = 127-mpe[1]
mdur = mpe[2]
mdelta_time = max(0, min(127, mtime))
# Durations
mdur = max(0, min(127, mdur))
# Pitch
mptc = mpe[4]
e = melody[i]
#=======================================================
# Timings...
time = e[1]-pe[1]
dur = e[2]
delta_time = max(0, min(127, time))
# Durations
dur = max(0, min(127, dur))
# Pitches
ptc = max(1, min(127, e[4]))
if ptc < 60:
ptc = 60 + (ptc % 12)
cha = e[3]
#=======================================================
# FINAL NOTE SEQ
if midx < len(melody):
melody_chords.append([delta_time, dur+128, ptc+384, mdelta_time+512, mptc+640])
mpe = melody[midx]
midx += 1
else:
melody_chords.append([delta_time, dur+128, ptc+384, mdelta_time+512, mptc+640])
pe = e
#===============================================================================
print('=' * 70)
print('Sample output events', melody_chords[:5])
print('=' * 70)
print('Generating...')
output = []
force_acc = input_acc_type
num_toks_per_note = 32
temperature=0.9
max_drums_limit=4
num_memory_tokens=4096
output1 = []
output2 = []
for m in melody_chords[:input_num_tokens]:
output1.extend(m)
input_seq = output1
if force_acc:
x = torch.LongTensor([input_seq+[0]]).cuda()
else:
x = torch.LongTensor([input_seq]).cuda()
time = input_seq[-2]-512
cur_time = 0
for _ in range(num_toks_per_note):
with ctx:
out = model.generate(x[-num_memory_tokens:],
1,
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if 0 <= o < 128:
cur_time += o
if cur_time < time and o < 384:
out = torch.LongTensor([[o]]).cuda()
x = torch.cat((x, out), 1)
else:
break
outy = x.tolist()[0][len(input_seq):]
output1.extend(outy)
output2.append(outy)
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', output1[:12])
print('=' * 70)
out1 = output2
accompaniment_MIDI_patch_number = 0
melody_MIDI_patch_number = 40
if len(out1) != 0:
song = out1
song_f = []
time = 0
ntime = 0
ndur = 0
vel = 90
npitch = 0
channel = 0
patches = [0] * 16
patches[0] = accompaniment_MIDI_patch_number
patches[3] = melody_MIDI_patch_number
for i, ss in enumerate(song):
ntime += melody_chords[i][0] * 32
ndur = (melody_chords[i][1]-128) * 32
nchannel = 1
npitch = (melody_chords[i][2]-256) % 128
vel = max(40, npitch)+20
song_f.append(['note', ntime, ndur, 3, npitch, vel, melody_MIDI_patch_number ])
time = ntime
for s in ss:
if 0 <= s < 128:
time += s * 32
if 128 <= s < 256:
dur = (s-128) * 32
if 256 <= s < 384:
pitch = (s-256)
vel = max(40, pitch)
song_f.append(['note', time, dur, 0, pitch, vel, accompaniment_MIDI_patch_number])
fn1 = "Ultimate-Accompaniment-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Ultimate Accompaniment Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi_summary = str(song_f[:3])
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', '')
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Accompaniment Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique accompaniment for any melody</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Accompaniment-Transformer&style=flat)\n\n"
"Accompaniment generation for any monophonic melody\n\n"
"Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Accompaniment-Transformer) on GitHub!\n\n"
"[Open In Colab]"
"(https://colab.research.google.com/github/asigalov61/Ultimate-Accompaniment-Transformer/blob/main/Ultimate_Accompaniment_Transformer.ipynb)"
" for faster execution and endless generation"
)
gr.Markdown("## Upload your MIDI or select a sample example MIDI")
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
input_num_tokens = gr.Slider(4, 128, value=32, step=1, label="Number of composition chords to generate accompaniment for")
input_acc_type = gr.Checkbox(label='Force accompaniment generation for each melody note')
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateAccompaniment, [input_midi, input_num_tokens, input_acc_type],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
gr.Examples(
[["Ultimate-Accompaniment-Transformer-Melody-Seed-1.mid", 128, True],
["Ultimate-Accompaniment-Transformer-Melody-Seed-2.mid", 128, False],
["Ultimate-Accompaniment-Transformer-Melody-Seed-3.mid", 128, True],
["Ultimate-Accompaniment-Transformer-Melody-Seed-4.mid", 128, False],
["Ultimate-Accompaniment-Transformer-Melody-Seed-5.mid", 128, True],
["Ultimate-Accompaniment-Transformer-Melody-Seed-6.mid", 128, False],
["Ultimate-Accompaniment-Transformer-Melody-Seed-7.mid", 128, True]],
[input_midi, input_num_tokens, input_acc_type],
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
GenerateAccompaniment,
cache_examples=True,
)
app.queue().launch()