Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import glob | |
import json | |
import os.path | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
import torch | |
import gradio as gr | |
from x_transformer_1_23_2 import * | |
import random | |
import tqdm | |
import midi_to_colab_audio | |
import TMIDIX | |
import matplotlib.pyplot as plt | |
in_space = os.getenv("SYSTEM") == "spaces" | |
# ================================================================================================= | |
def generate_drums(notes_times, | |
max_drums_limit = 8, | |
num_memory_tokens = 4096, | |
temperature=0.9): | |
x = torch.tensor([notes_times] * 1, dtype=torch.long, device=DEVICE) | |
o = 128 | |
ncount = 0 | |
while o > 127 and ncount < max_drums_limit: | |
with ctx: | |
out = model.generate(x[-num_memory_tokens:], | |
1, | |
temperature=temperature, | |
return_prime=False, | |
verbose=False) | |
o = out.tolist()[0][0] | |
if 256 <= o < 384: | |
ncount += 1 | |
if o > 127: | |
x = torch.cat((x, out), 1) | |
return x.tolist()[0][len(notes_times):] | |
# ================================================================================================= | |
def GenerateDrums(input_midi, input_num_tokens, progress=gr.Progress()): | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
fn = os.path.basename(input_midi.name) | |
fn1 = fn.split('.')[0] | |
print('-' * 70) | |
print('Input file name:', fn) | |
print('Req num toks:', input_num_tokens) | |
print('-' * 70) | |
#=============================================================================== | |
# Raw single-track ms score | |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) | |
#=============================================================================== | |
# Enhanced score notes | |
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
#======================================================= | |
# PRE-PROCESSING | |
#=============================================================================== | |
# Augmented enhanced score notes | |
escore_notes = [e for e in escore_notes if e[3] != 9] | |
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes) | |
patches = TMIDIX.patch_list_from_enhanced_score_notes(escore_notes) | |
dscore = TMIDIX.delta_score_notes(escore_notes, compress_timings=True, even_timings=True) | |
cscore = TMIDIX.chordify_score([d[1:] for d in dscore]) | |
cscore_melody = [c[0] for c in cscore] | |
comp_times = [0] + [t[1] for t in dscore if t[1] != 0] | |
#=============================================================================== | |
print('=' * 70) | |
print('Sample output events', escore_notes[:5]) | |
print('=' * 70) | |
print('Generating...') | |
output = [] | |
for c in progress.tqdm(comp_times[:input_num_tokens]): | |
output.append(c) | |
out = generate_drums(output, | |
temperature=0.9, | |
max_drums_limit=8, | |
num_memory_tokens=4096 | |
) | |
output.extend(out) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
print('=' * 70) | |
print('Sample INTs', output[:12]) | |
print('=' * 70) | |
if len(output) != 0: | |
song = output | |
song_f = [] | |
time = 0 | |
dtime = 0 | |
ntime = 0 | |
dur = 32 | |
vel = 90 | |
vels = [100, 120] | |
pitch = 0 | |
channel = 0 | |
idx = 0 | |
for ss in song: | |
if 0 <= ss < 128: | |
dtime = time | |
time += cscore[idx][0][0] * 32 | |
for c in cscore[idx]: | |
song_f.append(['note', time, c[1] * 32, c[2], c[3], c[4], c[5]]) | |
idx += 1 | |
if 128 <= ss < 256: | |
dtime += (ss-128) * 32 | |
if 256 <= ss < 384: | |
pitch = (ss-256) | |
song_f.append(['note', dtime, dur, 9, pitch, vels[pitch % 2], 128 ]) | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
output_signature = 'Ultimate Drums Transformer', | |
output_file_name = '/content/Ultimate-Drums-Transformer-Composition', | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches | |
) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=soundfont, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_midi_title = str(fn1) | |
output_midi_summary = str('') | |
output_midi = str(fn1) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(output_score, plot_title=output_midi, return_plt=True) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI title:', output_midi_title) | |
print('Output MIDI summary:', '') | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
yield output_midi_title, output_midi_summary, output_midi, output_audio, output_plot | |
# ================================================================================================= | |
if __name__ == "__main__": | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--share", action="store_true", default=False, help="share gradio app") | |
parser.add_argument("--port", type=int, default=7860, help="gradio server port") | |
opt = parser.parse_args() | |
soundfont = ["SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"] | |
print('Loading model...') | |
SEQ_LEN = 8192 # Models seq len | |
PAD_IDX = 385 # Models pad index | |
DEVICE = 'cuda' | |
# instantiate the model | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 1024, depth = 4, heads = 8, attn_flash = True) | |
) | |
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) | |
model.to(DEVICE) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model.load_state_dict( | |
torch.load('Ultimate_Drums_Transformer_Small_Trained_Model_8134_steps_0.3745_loss_0.8736_acc.pth', | |
map_location=DEVICE)) | |
print('=' * 70) | |
model.eval() | |
if DEVICE == 'cpu': | |
dtype = torch.bfloat16 | |
else: | |
dtype = torch.float16 | |
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) | |
print('Done!') | |
print('=' * 70) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Ultimate Drums Transformer</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique drums track for any MIDI</h1>") | |
gr.Markdown( | |
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Ultimate-Drums-Transformer&style=flat)\n\n" | |
"SOTA pure drums transformer which is capable of drums track generation for any source composition\n\n" | |
"Check out [Ultimate Drums Transformer](https://github.com/asigalov61/Ultimate-Drums-Transformer) on GitHub!\n\n" | |
"[Open In Colab]" | |
"(https://colab.research.google.com/github/asigalov61/Ultimate-Drums-Transformer/blob/main/Ultimate_Drums_Transformer.ipynb)" | |
" for faster execution and endless generation" | |
) | |
gr.Markdown("## Upload your MIDI") | |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) | |
input_num_tokens = gr.Slider(16, 512, value=256, label="Number of Tokens", info="Number of tokens to generate") | |
run_btn = gr.Button("generate", variant="primary") | |
gr.Markdown("## Generation results") | |
output_midi_title = gr.Textbox(label="Output MIDI title") | |
output_midi_summary = gr.Textbox(label="Output MIDI summary") | |
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio") | |
output_plot = gr.Plot(label="Output MIDI score plot") | |
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) | |
run_event = run_btn.click(GenerateDrums, [input_midi, input_num_tokens], | |
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]) | |
app.queue(concurrency_count=1).launch(server_port=opt.port, share=opt.share, inbrowser=True) |