|
import streamlit as st |
|
from llama_index import VectorStoreIndex, ServiceContext, Document |
|
from llama_index.llms import OpenAI |
|
import openai |
|
from llama_index import SimpleDirectoryReader |
|
|
|
st.set_page_config(page_title="You & AI - Parks", page_icon="π", layout="centered", initial_sidebar_state="auto", menu_items=None) |
|
openai.api_key = "1234" |
|
st.title("Personalize Your Parks Experience π¬ππ€") |
|
st.info("Check out more info on DC Parks & Rec at our [website](https://dpr.dc.gov/)", icon="π") |
|
|
|
if "messages" not in st.session_state.keys(): |
|
st.session_state.messages = [ |
|
{"role": "assistant", "content": "Ask me a question about Streamlit's open-source Python library!"} |
|
] |
|
|
|
@st.cache_resource(show_spinner=False) |
|
def load_data(): |
|
with st.spinner(text="Loading and indexing the Streamlit docs β hang tight! This should take 1-2 minutes."): |
|
reader = SimpleDirectoryReader(input_dir="./data", recursive=True) |
|
docs = reader.load_data() |
|
service_context = ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo", temperature=0.5, system_prompt="You are an expert on the Streamlit Python library and your job is to answer technical questions. Assume that all questions are related to the Streamlit Python library. Keep your answers technical and based on facts β do not hallucinate features.")) |
|
index = VectorStoreIndex.from_documents(docs, service_context=service_context) |
|
return index |
|
|
|
index = load_data() |
|
|
|
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True) |
|
|
|
if prompt := st.chat_input("Your question"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.write(message["content"]) |
|
|
|
|
|
if st.session_state.messages[-1]["role"] != "assistant": |
|
with st.chat_message("assistant"): |
|
with st.spinner("Thinking..."): |
|
response = chat_engine.chat(prompt) |
|
st.write(response.response) |
|
message = {"role": "assistant", "content": response.response} |
|
st.session_state.messages.append(message) |