Spaces:
Running
Running
import gradio as gr | |
from gradio_huggingfacehub_search import HuggingfaceHubSearch | |
import nbformat as nbf | |
from huggingface_hub import HfApi | |
from httpx import Client | |
import logging | |
import pandas as pd | |
from utils.notebook_utils import ( | |
eda_cells, | |
replace_wildcards, | |
rag_cells, | |
embeggins_cells, | |
) | |
from dotenv import load_dotenv | |
import os | |
from nbconvert import HTMLExporter | |
# TODOs: | |
# Improve UI code preview | |
# Add template for training | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
NOTEBOOKS_REPOSITORY = os.getenv("NOTEBOOKS_REPOSITORY") | |
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables" | |
assert ( | |
NOTEBOOKS_REPOSITORY is not None | |
), "You need to set NOTEBOOKS_REPOSITORY in your environment variables" | |
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co" | |
HEADERS = {"Accept": "application/json", "Content-Type": "application/json"} | |
client = Client(headers=HEADERS) | |
logging.basicConfig(level=logging.INFO) | |
def get_compatible_libraries(dataset: str): | |
try: | |
response = client.get( | |
f"{BASE_DATASETS_SERVER_URL}/compatible-libraries?dataset={dataset}" | |
) | |
response.raise_for_status() | |
return response.json() | |
except Exception as e: | |
logging.error(f"Error fetching compatible libraries: {e}") | |
raise | |
def create_notebook_file(cells, notebook_name): | |
nb = nbf.v4.new_notebook() | |
nb["cells"] = [ | |
nbf.v4.new_code_cell( | |
cmd["source"] | |
if isinstance(cmd["source"], str) | |
else "\n".join(cmd["source"]) | |
) | |
if cmd["cell_type"] == "code" | |
else nbf.v4.new_markdown_cell(cmd["source"]) | |
for cmd in cells | |
] | |
with open(notebook_name, "w") as f: | |
nbf.write(nb, f) | |
logging.info(f"Notebook {notebook_name} created successfully") | |
html_exporter = HTMLExporter() | |
html_data, _ = html_exporter.from_notebook_node(nb) | |
return html_data | |
def get_first_rows_as_df(dataset: str, config: str, split: str, limit: int): | |
try: | |
resp = client.get( | |
f"{BASE_DATASETS_SERVER_URL}/first-rows?dataset={dataset}&config={config}&split={split}" | |
) | |
resp.raise_for_status() | |
content = resp.json() | |
rows = content["rows"] | |
rows = [row["row"] for row in rows] | |
first_rows_df = pd.DataFrame.from_dict(rows).sample(frac=1).head(limit) | |
return first_rows_df | |
except Exception as e: | |
logging.error(f"Error fetching first rows: {e}") | |
raise | |
def longest_string_column(df): | |
longest_col = None | |
max_length = 0 | |
for col in df.select_dtypes(include=["object", "string"]): | |
max_col_length = df[col].str.len().max() | |
if max_col_length > max_length: | |
max_length = max_col_length | |
longest_col = col | |
return longest_col | |
def generate_eda_cells(dataset_id): | |
return generate_cells(dataset_id, eda_cells, "eda") | |
def generate_rag_cells(dataset_id): | |
return generate_cells(dataset_id, rag_cells, "rag") | |
def generate_embedding_cells(dataset_id): | |
return generate_cells(dataset_id, embeggins_cells, "embeddings") | |
def _push_to_hub( | |
dataset_id, | |
notebook_file, | |
): | |
logging.info(f"Pushing notebook to hub: {dataset_id} on file {notebook_file}") | |
notebook_name = notebook_file.split("/")[-1] | |
api = HfApi(token=HF_TOKEN) | |
try: | |
logging.info(f"About to push {notebook_file} - {dataset_id}") | |
api.upload_file( | |
path_or_fileobj=notebook_file, | |
path_in_repo=notebook_name, | |
repo_id=NOTEBOOKS_REPOSITORY, | |
repo_type="dataset", | |
) | |
except Exception as e: | |
logging.info("Failed to push notebook", e) | |
raise | |
def generate_cells(dataset_id, cells, notebook_type="eda"): | |
logging.info(f"Generating notebook for dataset {dataset_id}") | |
try: | |
libraries = get_compatible_libraries(dataset_id) | |
except Exception as err: | |
gr.Error("Unable to retrieve dataset info from HF Hub.") | |
logging.error(f"Failed to fetch compatible libraries: {err}") | |
return "", "## β This dataset is not accessible from the Hub β" | |
if not libraries: | |
logging.error(f"Dataset not compatible with pandas library - not libraries") | |
return "", "## β This dataset is not compatible with pandas library β" | |
pandas_library = next( | |
(lib for lib in libraries.get("libraries", []) if lib["library"] == "pandas"), | |
None, | |
) | |
if not pandas_library: | |
logging.error("Dataset not compatible with pandas library - not pandas library") | |
return "", "## β This dataset is not compatible with pandas library β" | |
first_config_loading_code = pandas_library["loading_codes"][0] | |
first_code = first_config_loading_code["code"] | |
first_config = first_config_loading_code["config_name"] | |
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0] | |
df = get_first_rows_as_df(dataset_id, first_config, first_split, 3) | |
longest_col = longest_string_column(df) | |
html_code = f"<iframe src='https://huggingface.co/datasets/{dataset_id}/embed/viewer' width='80%' height='560px'></iframe>" | |
wildcards = ["{dataset_name}", "{first_code}", "{html_code}", "{longest_col}"] | |
replacements = [dataset_id, first_code, html_code, longest_col] | |
has_numeric_columns = len(df.select_dtypes(include=["number"]).columns) > 0 | |
has_categoric_columns = len(df.select_dtypes(include=["object"]).columns) > 0 | |
if notebook_type in ("rag", "embeddings") and not has_categoric_columns: | |
logging.error( | |
"Dataset does not have categorical columns, which are required for RAG generation." | |
) | |
return ( | |
"", | |
"## β This dataset does not have categorical columns, which are required for Embeddings/RAG generation β", | |
) | |
if notebook_type == "eda" and not (has_categoric_columns or has_numeric_columns): | |
logging.error( | |
"Dataset does not have categorical or numeric columns, which are required for EDA generation." | |
) | |
return ( | |
"", | |
"## β This dataset does not have categorical or numeric columns, which are required for EDA generation β", | |
) | |
cells = replace_wildcards( | |
cells, wildcards, replacements, has_numeric_columns, has_categoric_columns | |
) | |
notebook_name = f"{dataset_id.replace('/', '-')}-{notebook_type}.ipynb" | |
html_content = create_notebook_file(cells, notebook_name=notebook_name) | |
_push_to_hub(dataset_id, notebook_name) | |
notebook_link = f"https://colab.research.google.com/#fileId=https%3A//huggingface.co/datasets/asoria/dataset-notebook-creator-content/blob/main/{notebook_name}" | |
return ( | |
html_content, | |
f"## π Ready to explore? Play and run the generated notebook π [here]({notebook_link})!", | |
) | |
css = """ | |
#box { | |
height: 650px; | |
overflow-y: scroll !important; | |
} | |
""" | |
with gr.Blocks( | |
fill_height=True, | |
fill_width=True, | |
css=css, | |
) as demo: | |
gr.Markdown("# π€ Dataset notebook creator π΅οΈ") | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
text_input = gr.Textbox(label="Suggested notebook type", visible=False) | |
dataset_name = HuggingfaceHubSearch( | |
label="Hub Dataset ID", | |
placeholder="Search for dataset id on Huggingface", | |
search_type="dataset", | |
value="", | |
) | |
dataset_samples = gr.Examples( | |
examples=[ | |
[ | |
"scikit-learn/iris", | |
"Try this dataset for Exploratory Data Analysis", | |
], | |
[ | |
"infinite-dataset-hub/GlobaleCuisineRecipes", | |
"Try this dataset for Embeddings generation", | |
], | |
[ | |
"infinite-dataset-hub/GlobalBestSellersSummaries", | |
"Try this dataset for RAG generation", | |
], | |
], | |
inputs=[dataset_name, text_input], | |
cache_examples=False, | |
) | |
def embed(name): | |
if not name: | |
return gr.Markdown("### No dataset provided") | |
html_code = f""" | |
<iframe | |
src="https://huggingface.co/datasets/{name}/embed/viewer/default/train" | |
frameborder="0" | |
width="100%" | |
height="350px" | |
></iframe> | |
""" | |
return gr.HTML(value=html_code, elem_classes="viewer") | |
with gr.Row(): | |
generate_eda_btn = gr.Button("Exploratory Data Analysis") | |
generate_embedding_btn = gr.Button("Embeddings") | |
generate_rag_btn = gr.Button("RAG") | |
generate_training_btn = gr.Button( | |
"Training - Coming soon", interactive=False | |
) | |
with gr.Column(scale=2): | |
code_component = gr.HTML(elem_id="box") | |
go_to_notebook = gr.Markdown("", visible=True) | |
generate_eda_btn.click( | |
generate_eda_cells, | |
inputs=[dataset_name], | |
outputs=[code_component, go_to_notebook], | |
) | |
generate_embedding_btn.click( | |
generate_embedding_cells, | |
inputs=[dataset_name], | |
outputs=[code_component, go_to_notebook], | |
) | |
generate_rag_btn.click( | |
generate_rag_cells, | |
inputs=[dataset_name], | |
outputs=[code_component, go_to_notebook], | |
) | |
gr.Markdown( | |
"π§ Note: Some code may not be compatible with datasets that contain binary data or complex structures. π§" | |
) | |
demo.launch() | |