Spaces:
Running
Running
Adding template for simple RAG
Browse files- app.py +0 -2
- utils/notebook_utils.py +142 -39
app.py
CHANGED
@@ -17,7 +17,6 @@ import os
|
|
17 |
# TODOS:
|
18 |
# Validate dataset type for type before generating the notebook
|
19 |
# Add template for training
|
20 |
-
# Add template for RAG and embeddings
|
21 |
|
22 |
load_dotenv()
|
23 |
|
@@ -169,7 +168,6 @@ def generate_cells(dataset_id, cells, notebook_type="eda"):
|
|
169 |
)
|
170 |
generated_text = ""
|
171 |
# Show only the first 40 lines, would like to have a scroll in gr.Code https://github.com/gradio-app/gradio/issues/9192
|
172 |
-
viewer_lines = 0
|
173 |
for cell in cells:
|
174 |
generated_text += cell["source"] + "\n"
|
175 |
yield generated_text, ""
|
|
|
17 |
# TODOS:
|
18 |
# Validate dataset type for type before generating the notebook
|
19 |
# Add template for training
|
|
|
20 |
|
21 |
load_dotenv()
|
22 |
|
|
|
168 |
)
|
169 |
generated_text = ""
|
170 |
# Show only the first 40 lines, would like to have a scroll in gr.Code https://github.com/gradio-app/gradio/issues/9192
|
|
|
171 |
for cell in cells:
|
172 |
generated_text += cell["source"] + "\n"
|
173 |
yield generated_text, ""
|
utils/notebook_utils.py
CHANGED
@@ -20,14 +20,6 @@ def replace_wildcards(
|
|
20 |
return new_templates
|
21 |
|
22 |
|
23 |
-
rag_cells = [
|
24 |
-
{
|
25 |
-
"cell_type": "markdown",
|
26 |
-
"source": "# Retrieval-Augmented Generation (RAG) System Notebook",
|
27 |
-
},
|
28 |
-
{"cell_type": "code", "source": ""},
|
29 |
-
]
|
30 |
-
|
31 |
embeggins_cells = [
|
32 |
{
|
33 |
"cell_type": "markdown",
|
@@ -92,7 +84,7 @@ text_list = df[column_to_generate_embeddings].tolist()
|
|
92 |
"cell_type": "code",
|
93 |
"source": """
|
94 |
# Specify the embedding model you want to use
|
95 |
-
model = SentenceTransformer('
|
96 |
""",
|
97 |
},
|
98 |
{
|
@@ -282,45 +274,156 @@ for column in df.select_dtypes(include=['int64', 'float64']).columns:
|
|
282 |
]
|
283 |
|
284 |
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
-
|
303 |
-
|
304 |
|
305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
-
|
310 |
|
311 |
-
|
|
|
312 |
|
313 |
-
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
315 |
|
316 |
|
317 |
def generate_rag_system_prompt():
|
318 |
-
"""
|
319 |
-
The dataset is provided as a pandas DataFrame.
|
320 |
-
|
321 |
-
Use only the following libraries: 'pandas' for data manipulation, 'sentence-transformers' to load the embedding model, 'faiss-cpu' to create the index, and 'transformers' for inference.
|
322 |
-
|
323 |
-
The RAG notebook should include:
|
324 |
|
325 |
1. Install necessary libraries.
|
326 |
2. Import libraries.
|
|
|
20 |
return new_templates
|
21 |
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
embeggins_cells = [
|
24 |
{
|
25 |
"cell_type": "markdown",
|
|
|
84 |
"cell_type": "code",
|
85 |
"source": """
|
86 |
# Specify the embedding model you want to use
|
87 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
88 |
""",
|
89 |
},
|
90 |
{
|
|
|
274 |
]
|
275 |
|
276 |
|
277 |
+
rag_cells = [
|
278 |
+
{
|
279 |
+
"cell_type": "markdown",
|
280 |
+
"source": """
|
281 |
+
---
|
282 |
+
# **Retrieval-Augmented Generation Notebook for {dataset_name} dataset**
|
283 |
+
---
|
284 |
+
""",
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "markdown",
|
288 |
+
"source": "## 1. Setup necessary libraries and load the dataset",
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"cell_type": "code",
|
292 |
+
"source": """
|
293 |
+
# Install and import necessary libraries.
|
294 |
+
!pip install pandas sentence-transformers faiss-cpu transformers torch
|
295 |
+
""",
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "code",
|
299 |
+
"source": """
|
300 |
+
import pandas as pd
|
301 |
+
from sentence_transformers import SentenceTransformer
|
302 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
303 |
+
import faiss
|
304 |
+
import torch
|
305 |
+
""",
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"cell_type": "code",
|
309 |
+
"source": """
|
310 |
+
# Load the dataset as a DataFrame
|
311 |
+
{first_code}
|
312 |
+
""",
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"cell_type": "code",
|
316 |
+
"source": """
|
317 |
+
# Specify the column name that contains the text data to generate embeddings
|
318 |
+
column_to_generate_embeddings = '{longest_col}'
|
319 |
+
""",
|
320 |
+
},
|
321 |
+
{
|
322 |
+
"cell_type": "markdown",
|
323 |
+
"source": "## 2. Loading embedding model and creating FAISS index",
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"source": """
|
328 |
+
# Remove duplicate entries based on the specified column
|
329 |
+
df = df.drop_duplicates(subset=column_to_generate_embeddings)
|
330 |
+
""",
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"cell_type": "code",
|
334 |
+
"source": """
|
335 |
+
# Convert the column data to a list of text entries
|
336 |
+
text_list = df[column_to_generate_embeddings].tolist()
|
337 |
+
""",
|
338 |
+
},
|
339 |
+
{
|
340 |
+
"cell_type": "code",
|
341 |
+
"source": """
|
342 |
+
# Specify the embedding model you want to use
|
343 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
344 |
+
""",
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"cell_type": "code",
|
348 |
+
"source": """
|
349 |
+
vectors = model.encode(text_list)
|
350 |
+
vector_dimension = vectors.shape[1]
|
351 |
|
352 |
+
# Initialize the FAISS index with the appropriate dimension (384 for this model)
|
353 |
+
index = faiss.IndexFlatL2(vector_dimension)
|
354 |
|
355 |
+
# Encode the text list into embeddings and add them to the FAISS index
|
356 |
+
index.add(vectors)
|
357 |
+
""",
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"cell_type": "markdown",
|
361 |
+
"source": "## 3. Perform a text search",
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "code",
|
365 |
+
"source": """
|
366 |
+
# Specify the text you want to search for in the list
|
367 |
+
text_to_search = text_list[0]
|
368 |
+
print(f"Text to search: {text_to_search}")
|
369 |
+
""",
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"cell_type": "code",
|
373 |
+
"source": """
|
374 |
+
# Generate the embedding for the search query
|
375 |
+
query_embedding = model.encode([text_to_search])
|
376 |
+
""",
|
377 |
+
},
|
378 |
+
{
|
379 |
+
"cell_type": "code",
|
380 |
+
"source": """
|
381 |
+
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
|
382 |
+
D, I = index.search(query_embedding, k=10)
|
383 |
|
384 |
+
# Print the similar documents found
|
385 |
+
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
|
386 |
+
""",
|
387 |
+
},
|
388 |
+
{"cell_type": "markdown", "source": "## 4. Load pipeline and perform inference"},
|
389 |
+
{
|
390 |
+
"cell_type": "code",
|
391 |
+
"source": """
|
392 |
+
# Adjust model name as needed
|
393 |
+
checkpoint = 'HuggingFaceTB/SmolLM-1.7B-Instruct'
|
394 |
|
395 |
+
device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage
|
396 |
|
397 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
398 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
399 |
|
400 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1)
|
401 |
+
""",
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"cell_type": "code",
|
405 |
+
"source": """
|
406 |
+
# Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query
|
407 |
+
query = "How to prepare a cake?"
|
408 |
+
selected_elements = [text_list[i] for i in I[0].tolist()]
|
409 |
+
context = ','.join(selected_elements)
|
410 |
+
prompt = f"system: Answer user's question based on '{context}'. user: {query}"
|
411 |
+
""",
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"cell_type": "code",
|
415 |
+
"source": """
|
416 |
+
# Send the prompt to the pipeline and show the answer
|
417 |
+
output = generator(prompt)
|
418 |
+
print("Generated Summary:")
|
419 |
+
print(output[0]['generated_text'])
|
420 |
+
""",
|
421 |
+
},
|
422 |
+
]
|
423 |
|
424 |
|
425 |
def generate_rag_system_prompt():
|
426 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
1. Install necessary libraries.
|
429 |
2. Import libraries.
|