Spaces:
Runtime error
Runtime error
# https://huggingface.co/deepkyu/ml-talking-face | |
import os | |
import subprocess | |
REST_IP = os.environ['REST_IP'] | |
SERVICE_PORT = int(os.environ['SERVICE_PORT']) | |
TRANSLATION_APIKEY_URL = os.environ['TRANSLATION_APIKEY_URL'] | |
GOOGLE_APPLICATION_CREDENTIALS = os.environ['GOOGLE_APPLICATION_CREDENTIALS'] | |
subprocess.call(f"wget --no-check-certificate -O {GOOGLE_APPLICATION_CREDENTIALS} {TRANSLATION_APIKEY_URL}", shell=True) | |
TOXICITY_THRESHOLD = float(os.getenv('TOXICITY_THRESHOLD', 0.7)) | |
import gradio as gr | |
from toxicity_estimator import PerspectiveAPI | |
from translator import Translator | |
from client_rest import RestAPIApplication | |
from pathlib import Path | |
import argparse | |
import threading | |
import yaml | |
TITLE = Path("docs/title.txt").read_text() | |
DESCRIPTION = Path("docs/description.md").read_text() | |
class GradioApplication: | |
def __init__(self, rest_ip, rest_port, max_seed): | |
self.lang_list = { | |
'ko': 'ko_KR', | |
'en': 'en_US', | |
'ja': 'ja_JP', | |
'zh': 'zh_CN', | |
'zh-CN': 'zh_CN' | |
} | |
self.background_list = [None, | |
"background_image/cvpr.png", | |
"background_image/black.png", | |
"background_image/river.mp4", | |
"background_image/sky.mp4"] | |
self.perspective_api = PerspectiveAPI() | |
self.translator = Translator() | |
self.rest_application = RestAPIApplication(rest_ip, rest_port) | |
self.output_dir = Path("output_file") | |
inputs = prepare_input() | |
outputs = prepare_output() | |
self.iface = gr.Interface(fn=self.infer, | |
title=TITLE, | |
description=DESCRIPTION, | |
inputs=inputs, | |
outputs=outputs, | |
allow_flagging='never', | |
article=Path("docs/article.md").read_text()) | |
self.max_seed = max_seed | |
self._file_seed = 0 | |
self.lock = threading.Lock() | |
def _get_file_seed(self): | |
return f"{self._file_seed % self.max_seed:02d}" | |
def _reset_file_seed(self): | |
self._file_seed = 0 | |
def _counter_file_seed(self): | |
with self.lock: | |
self._file_seed += 1 | |
def get_lang_code(self, lang): | |
return self.lang_list[lang] | |
def get_background_data(self, background_index): | |
# get background filename and its extension | |
data_path = self.background_list[background_index] | |
if data_path is not None: | |
with open(data_path, 'rb') as rf: | |
background_data = rf.read() | |
is_video_background = str(data_path).endswith(".mp4") | |
else: | |
background_data = None | |
is_video_background = False | |
return background_data, is_video_background | |
def return_format(toxicity_prob, target_text, lang_dest, video_filename, detail=""): | |
return {'Toxicity': toxicity_prob}, f"Language: {lang_dest}\nText: {target_text}\n-\nDetails: {detail}", str(video_filename) | |
def infer(self, text, lang, duration_rate, action, background_index): | |
self._counter_file_seed() | |
print(f"File Seed: {self._file_seed}") | |
toxicity_prob = 0.0 | |
target_text = "" | |
lang_dest = "" | |
video_filename = "vacant.mp4" | |
# Toxicity estimation | |
try: | |
toxicity_prob = self.perspective_api.get_score(text) | |
except Exception as e: # when Perspective API doesn't work | |
pass | |
if toxicity_prob > TOXICITY_THRESHOLD: | |
detail = "Sorry, it seems that the input text is too toxic." | |
return self.return_format(toxicity_prob, target_text, lang_dest, video_filename, detail=f"Error: {detail}") | |
# Google Translate API | |
try: | |
target_text, lang_dest = self.translator.get_translation(text, lang) | |
except Exception as e: | |
target_text = "" | |
lang_dest = "" | |
detail = f"Error from language translation: ({e})" | |
return self.return_format(toxicity_prob, target_text, lang_dest, video_filename, detail=f"Error: {detail}") | |
try: | |
self.translator.length_check(lang_dest, target_text) # assertion check | |
except AssertionError as e: | |
return self.return_format(toxicity_prob, target_text, lang_dest, video_filename, detail=f"Error: {str(e)}") | |
lang_rpc_code = self.get_lang_code(lang_dest) | |
# Video Inference | |
background_data, is_video_background = self.get_background_data(background_index) | |
video_data = self.rest_application.get_video(target_text, lang_rpc_code, duration_rate, action.lower(), | |
background_data, is_video_background) | |
print(f"Video data size: {len(video_data)}") | |
video_filename = self.output_dir / f"{self._file_seed:02d}.mkv" | |
with open(video_filename, "wb") as video_file: | |
video_file.write(video_data) | |
return self.return_format(toxicity_prob, target_text, lang_dest, video_filename) | |
def run(self, server_port=7860, share=False): | |
try: | |
self.iface.launch(height=900, | |
share=share, server_port=server_port, | |
enable_queue=True) | |
except KeyboardInterrupt: | |
gr.close_all() | |
def prepare_input(): | |
text_input = gr.Textbox(lines=2, | |
placeholder="Type your text with English, Chinese, Korean, and Japanese.", | |
value="Hello, this is demonstration for talking face generation " | |
"with multilingual text-to-speech.", | |
label="Text") | |
lang_input = gr.Radio(['Korean', 'English', 'Japanese', 'Chinese'], | |
type='value', | |
value=None, | |
label="Language") | |
duration_rate_input = gr.Slider(minimum=0.8, | |
maximum=1.2, | |
step=0.01, | |
value=1.0, | |
label="Duration (The bigger the value, the slower the speech)") | |
action_input = gr.Radio(['Default', 'Hand', 'BothHand', 'HandDown', 'Sorry'], | |
type='value', | |
value='Default', | |
label="Select an action ...") | |
background_input = gr.Radio(['None', 'CVPR', 'Black', 'River', 'Sky'], | |
type='index', | |
value='None', | |
label="Select a background image/video ...") | |
return [text_input, lang_input, duration_rate_input, | |
action_input, background_input] | |
def prepare_output(): | |
toxicity_output = gr.Label(num_top_classes=1, label="Toxicity (from Perspective API)") | |
translation_result_otuput = gr.Textbox(type="str", label="Translation Result") | |
video_output = gr.Video(format='mp4') | |
return [toxicity_output, translation_result_otuput, video_output] | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='GRADIO DEMO for talking face generation submitted to CVPR2022') | |
parser.add_argument('-p', '--port', dest='gradio_port', type=int, default=7860, help="Port for gradio") | |
parser.add_argument('--rest_ip', type=str, default=REST_IP, help="IP for REST API") | |
parser.add_argument('--rest_port', type=int, default=SERVICE_PORT, help="Port for REST API") | |
parser.add_argument('--max_seed', type=int, default=20, help="Max seed for saving video") | |
parser.add_argument('--share', action='store_true', help='get publicly sharable link') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_args() | |
gradio_application = GradioApplication(args.rest_ip, args.rest_port, args.max_seed) | |
gradio_application.run(server_port=args.gradio_port, share=args.share) | |