Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import time
|
3 |
+
|
4 |
+
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
device = "cpu" # the device to load the model onto
|
7 |
+
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(
|
9 |
+
"Qwen/Qwen2-0.5B-Instruct",
|
10 |
+
torch_dtype="auto",
|
11 |
+
device_map="auto"
|
12 |
+
)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
14 |
+
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
@app.get("/")
|
18 |
+
async def read_root():
|
19 |
+
return {"Hello": "World!"}
|
20 |
+
start_time = time.time()
|
21 |
+
messages = [
|
22 |
+
{"role": "system", "content": "You are a helpful assistant, Sia. You are developed by Sushma. You will response in polity, clear, brief and in short length."},
|
23 |
+
{"role": "user", "content": "Who are you?"},
|
24 |
+
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma. I am here to assist you. How can I help you today?"},
|
25 |
+
{"role": "user", "content": "Hi, How are you?"}
|
26 |
+
]
|
27 |
+
text = tokenizer.apply_chat_template(
|
28 |
+
messages,
|
29 |
+
tokenize=False,
|
30 |
+
add_generation_prompt=True
|
31 |
+
)
|
32 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
33 |
+
|
34 |
+
generated_ids = model.generate(
|
35 |
+
model_inputs.input_ids,
|
36 |
+
max_new_tokens=64
|
37 |
+
)
|
38 |
+
generated_ids = [
|
39 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
40 |
+
]
|
41 |
+
|
42 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
43 |
+
print(response)
|
44 |
+
end_time = time.time()
|
45 |
+
time_taken = end_time - start_time
|
46 |
+
print(time_taken)
|
47 |
+
|
48 |
+
|
49 |
+
@app.get("/test")
|
50 |
+
async def read_droot():
|
51 |
+
messages = [
|
52 |
+
{"role": "system", "content": "You are a helpful assistant, Sia. You are developed by Sushma. You will response in polity, clear, brief and in short length."},
|
53 |
+
{"role": "user", "content": "Who are you?"},
|
54 |
+
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma. I am here to assist you. How can I help you today?"},
|
55 |
+
{"role": "user", "content": "Hi, How are you?"}
|
56 |
+
]
|
57 |
+
text = tokenizer.apply_chat_template(
|
58 |
+
messages,
|
59 |
+
tokenize=False,
|
60 |
+
add_generation_prompt=True
|
61 |
+
)
|
62 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
63 |
+
|
64 |
+
generated_ids = model.generate(
|
65 |
+
model_inputs.input_ids,
|
66 |
+
max_new_tokens=64
|
67 |
+
)
|
68 |
+
generated_ids = [
|
69 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
70 |
+
]
|
71 |
+
|
72 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
73 |
+
print(response)
|
74 |
+
end_time = time.time()
|
75 |
+
time_taken = end_time - start_time
|
76 |
+
print(time_taken)
|
77 |
+
return {"Hello": "World!"}
|