Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,32 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
import time
|
|
|
3 |
import torch
|
4 |
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
device = "cpu" # the device to load the model onto
|
7 |
-
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
9 |
"Qwen/Qwen2-0.5B-Instruct",
|
10 |
torch_dtype="auto",
|
11 |
device_map="auto"
|
12 |
)
|
|
|
|
|
13 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
app = FastAPI()
|
16 |
-
|
|
|
17 |
@app.get("/")
|
18 |
async def read_root():
|
19 |
return {"Hello": "World!"}
|
@@ -22,25 +35,35 @@ messages = [
|
|
22 |
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
|
23 |
{"role": "user", "content": "I'm Alok. Who are you?"},
|
24 |
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
|
25 |
-
{"role": "user", "content": "
|
26 |
]
|
|
|
27 |
text = tokenizer.apply_chat_template(
|
28 |
messages,
|
29 |
tokenize=False,
|
30 |
add_generation_prompt=True
|
31 |
)
|
|
|
|
|
32 |
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
33 |
-
|
|
|
34 |
generated_ids = model.generate(
|
35 |
model_inputs.input_ids,
|
36 |
max_new_tokens=64
|
37 |
)
|
|
|
|
|
38 |
generated_ids = [
|
39 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
40 |
]
|
41 |
-
|
|
|
42 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
43 |
print(response)
|
|
|
|
|
|
|
44 |
end_time = time.time()
|
45 |
time_taken = end_time - start_time
|
46 |
print(time_taken)
|
@@ -53,7 +76,7 @@ async def read_droot():
|
|
53 |
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
|
54 |
{"role": "user", "content": "I'm Alok. Who are you?"},
|
55 |
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
|
56 |
-
{"role": "user", "content": "
|
57 |
]
|
58 |
text = tokenizer.apply_chat_template(
|
59 |
messages,
|
@@ -77,3 +100,34 @@ async def read_droot():
|
|
77 |
print(time_taken)
|
78 |
return {"Hello": "World!"}
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastapi import FastAPI
|
2 |
import time
|
3 |
+
time = time.time()
|
4 |
import torch
|
5 |
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
device = "cpu" # the device to load the model onto
|
8 |
+
time1 = time.time()
|
9 |
model = AutoModelForCausalLM.from_pretrained(
|
10 |
"Qwen/Qwen2-0.5B-Instruct",
|
11 |
torch_dtype="auto",
|
12 |
device_map="auto"
|
13 |
)
|
14 |
+
time2 = time.time()
|
15 |
+
print(time2-time1)
|
16 |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
17 |
+
time3 = time.time()
|
18 |
+
print(time3-time1)
|
19 |
+
model1 = AutoModelForCausalLM.from_pretrained(
|
20 |
+
"Qwen/Qwen2-1.5B-Instruct",
|
21 |
+
torch_dtype="auto",
|
22 |
+
device_map="auto"
|
23 |
+
)
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
25 |
+
time4 = time.time()
|
26 |
+
print(time4-time3)
|
27 |
app = FastAPI()
|
28 |
+
time5 = time.time()
|
29 |
+
print(time5-time4)
|
30 |
@app.get("/")
|
31 |
async def read_root():
|
32 |
return {"Hello": "World!"}
|
|
|
35 |
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
|
36 |
{"role": "user", "content": "I'm Alok. Who are you?"},
|
37 |
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
|
38 |
+
{"role": "user", "content": "How are you?"}
|
39 |
]
|
40 |
+
time1 = time.time()
|
41 |
text = tokenizer.apply_chat_template(
|
42 |
messages,
|
43 |
tokenize=False,
|
44 |
add_generation_prompt=True
|
45 |
)
|
46 |
+
time2 = time.time()
|
47 |
+
print(time2-time1)
|
48 |
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
49 |
+
time3 = time.time()
|
50 |
+
print(time3-time2)
|
51 |
generated_ids = model.generate(
|
52 |
model_inputs.input_ids,
|
53 |
max_new_tokens=64
|
54 |
)
|
55 |
+
time4 = time.time()
|
56 |
+
print(time4-time3)
|
57 |
generated_ids = [
|
58 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
59 |
]
|
60 |
+
time5 = time.time()
|
61 |
+
print(time5-time4)
|
62 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
63 |
print(response)
|
64 |
+
time6 = time.time()
|
65 |
+
print(time6-time5)
|
66 |
+
|
67 |
end_time = time.time()
|
68 |
time_taken = end_time - start_time
|
69 |
print(time_taken)
|
|
|
76 |
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
|
77 |
{"role": "user", "content": "I'm Alok. Who are you?"},
|
78 |
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
|
79 |
+
{"role": "user", "content": "How are you?"}
|
80 |
]
|
81 |
text = tokenizer.apply_chat_template(
|
82 |
messages,
|
|
|
100 |
print(time_taken)
|
101 |
return {"Hello": "World!"}
|
102 |
|
103 |
+
@app.get("/text")
|
104 |
+
async def read_droot():
|
105 |
+
starttime = time.time()
|
106 |
+
messages = [
|
107 |
+
{"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."},
|
108 |
+
{"role": "user", "content": "I'm Alok. Who are you?"},
|
109 |
+
{"role": "assistant", "content": "I am Sia, a small language model created by Sushma."},
|
110 |
+
{"role": "user", "content": "How are you?"}
|
111 |
+
]
|
112 |
+
text = tokenizer.apply_chat_template(
|
113 |
+
messages,
|
114 |
+
tokenize=False,
|
115 |
+
add_generation_prompt=True
|
116 |
+
)
|
117 |
+
model_inputs = tokenizer1([text], return_tensors="pt").to(device)
|
118 |
+
|
119 |
+
generated_ids = model1.generate(
|
120 |
+
model_inputs.input_ids,
|
121 |
+
max_new_tokens=64
|
122 |
+
)
|
123 |
+
generated_ids = [
|
124 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
125 |
+
]
|
126 |
+
|
127 |
+
response = tokenizer1.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
128 |
+
print(response)
|
129 |
+
end_time = time.time()
|
130 |
+
time_taken = end_time - starttime
|
131 |
+
print(time_taken)
|
132 |
+
return {"Hello": "World!"}
|
133 |
+
#return {response: time}
|