from fastapi import FastAPI import time from transformers import AutoModelForCausalLM, AutoTokenizer device = "cpu" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-0.5B-Instruct", torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") app = FastAPI() @app.get("/") async def read_root(): return {"Hello": "World!"} start_time = time.time() messages = [ {"role": "system", "content": "You are a helpful assistant, Sia. You are developed by Sushma. You will response in polity and brief."}, {"role": "user", "content": "Who are you?"}, {"role": "assistant", "content": "I am Sia, a small language model created by Sushma. I am here to assist you."}, {"role": "user", "content": "Hi, How are you?"} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=64 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) end_time = time.time() time_taken = end_time - start_time print(time_taken) @app.get("/test") async def read_droot(): starttime = time.time() messages = [ {"role": "system", "content": "You are a helpful assistant, Sia. You are developed by Sushma. You will response in polity and brief."}, {"role": "user", "content": "Who are you?"}, {"role": "assistant", "content": "I am Sia, a small language model created by Sushma. I am here to assist you."}, {"role": "user", "content": "Hi, How are you?"} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=64 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) end_time = time.time() time_taken = end_time - starttime print(time_taken) return {"Hello": "World!"}