from fastapi import FastAPI import time import torch import os access_token = os.getenv("read_access") from transformers import AutoModelForCausalLM, AutoTokenizer device = "cpu" # the device to load the model onto tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") model1 = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-1.5B-Instruct", device_map="auto" ) model = AutoModelForCausalLM.from_pretrained( "Qwen/Qwen2-1.5B-Instruct", device_map="auto", torch_dtype="auto" ) app = FastAPI() @app.get("/") async def read_root(): return {"Hello": "World!"} @app.get("/test") async def read_droot(): starttime = time.time() messages = [ {"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."}, {"role": "user", "content": "I'm Alok. Who are you?"}, {"role": "assistant", "content": "I am Sia, a small language model created by Sushma."}, {"role": "user", "content": "How are you?"} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model.generate( model_inputs.input_ids, max_new_tokens=128 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) end_time = time.time() time_taken = end_time - starttime print(time_taken) return {"Hello": "World!"} @app.get("/text") async def read_droot(): starttime = time.time() messages = [ {"role": "system", "content": "You are a helpful assistant, Sia, developed by Sushma. You will response in polity and brief."}, {"role": "user", "content": "I'm Alok. Who are you?"}, {"role": "assistant", "content": "I am Sia, a small language model created by Sushma."}, {"role": "user", "content": "How are you?"} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(device) generated_ids = model1.generate( model_inputs.input_ids, max_new_tokens=128 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] print(response) end_time = time.time() time_taken = end_time - starttime print(time_taken) return {"Hello": "World!"} #return {response: time}