Spaces:
Running
Running
# apis.py | |
import sys | |
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
from datasets import load_dataset | |
import torch | |
import soundfile as sf | |
import gradio as gr | |
import os | |
def generate_speech(text, person): | |
# Initialize SpeechT5 components | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Process text using the processor | |
inputs = processor(text=text, return_tensors="pt") | |
# Load xvector containing speaker's voice characteristics from a dataset | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
# Set the speaker based on the provided person parameter | |
if person == "male": | |
speaker_index = 5004 | |
elif person == "female": | |
speaker_index = 7306 | |
else: | |
raise ValueError("Invalid value for 'person'. Use 'male' or 'female'.") | |
# Generate speech using the selected speaker | |
speaker_embeddings = torch.tensor(embeddings_dataset[speaker_index]["xvector"]).unsqueeze(0) | |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) | |
# Save the generated speech as a WAV file | |
# sf.write("speech.wav", speech.numpy(), samplerate=16000) | |
# print(f"The speech was generated for {result_person}.") | |
# Create an in-memory buffer to hold the speech data | |
output_file = "output_file.wav" | |
# Write the speech data to the buffer | |
sf.write(output_file, speech.numpy(), samplerate=16000, format='wav', subtype='PCM_16') | |
# Return the in-memory buffer | |
return output_file | |
default_text = "" | |
demo = gr.Interface( | |
fn=generate_speech, | |
inputs = [ | |
gr.Textbox(value=default_text, label="Input text", placeholder="Type something here.."), | |
gr.Radio(choices=['male', 'female'], label="Targert Speaker",value="female"), | |
], | |
outputs=gr.Audio(label=""), | |
title= "Text to speech" | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |