import gradio as gr import PIL.Image as Image from ultralytics import YOLO import spaces @spaces.GPU def yolo_inference(images, model_id, conf_threshold, iou_threshold, max_detection): model = YOLO(model_id) results = model.predict( source=images, conf=conf_threshold, iou=iou_threshold, imgsz=640, max_det=max_detection, show_labels=True, show_conf=True, ) for r in results: image_array = r.plot() image = Image.fromarray(image_array[..., ::-1]) return image interface = gr.Interface( fn=yolo_inference, inputs=[ gr.Image(type="pil", label="Upload Image"), gr.Dropdown( choices=['yolo11n.pt', 'yolo11s.pt', 'yolo11m.pt', 'yolo11l.pt', 'yolo11x.pt', 'yolo11n-seg.pt', 'yolo11s-seg.pt', 'yolo11m-seg.pt', 'yolo11l-seg.pt', 'yolo11x-seg.pt', 'yolo11n-pose.pt', 'yolo11s-pose.pt', 'yolo11m-pose.pt', 'yolo11l-pose.pt', 'yolo11x-pose.pt', 'yolo11n-obb.pt', 'yolo11s-obb.pt', 'yolo11m-obb.pt', 'yolo11l-obb.pt', 'yolo11x-obb.pt', 'yolo11n-cls.pt', 'yolo11s-cls.pt', 'yolo11m-cls.pt', 'yolo11l-cls.pt', 'yolo11x-cls.pt'], label="Model Name", value="yolo11n.pt", ), gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence Threshold"), gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold"), gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection"), ], outputs=gr.Image(type="pil", label="Annotated Image"), cache_examples=True, title="Yolo11: Object Detection", description="Upload image(s) for inference using the latest Ultralytics YOLO11 models.", examples=[ ["zidane.jpg", "yolo11s.pt", 0.25, 0.45, 300], ["bus.jpg", "yolo11m.pt", 0.25, 0.45, 300], ["yolo_vision.jpg", "yolo11x.pt", 0.25, 0.45, 300], ], ) interface.launch()