Spaces:
Runtime error
Runtime error
File size: 8,875 Bytes
810c8ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import argparse
import glob
import mimetypes
import os
import queue
import shutil
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.utils.logger import AvgTimer
from tqdm import tqdm
from realesrgan import IOConsumer, PrefetchReader, RealESRGANer
from realesrgan.archs.srvgg_arch import SRVGGNetCompact
def main():
"""Inference demo for Real-ESRGAN.
It mainly for restoring anime videos.
"""
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--input', type=str, default='inputs', help='Input image or folder')
parser.add_argument(
'-n',
'--model_name',
type=str,
default='RealESRGAN_x4plus',
help=('Model names: RealESRGAN_x4plus | RealESRNet_x4plus | RealESRGAN_x4plus_anime_6B | RealESRGAN_x2plus'
'RealESRGANv2-anime-xsx2 | RealESRGANv2-animevideo-xsx2-nousm | RealESRGANv2-animevideo-xsx2'
'RealESRGANv2-anime-xsx4 | RealESRGANv2-animevideo-xsx4-nousm | RealESRGANv2-animevideo-xsx4'))
parser.add_argument('-o', '--output', type=str, default='results', help='Output folder')
parser.add_argument('-s', '--outscale', type=float, default=4, help='The final upsampling scale of the image')
parser.add_argument('--suffix', type=str, default='out', help='Suffix of the restored video')
parser.add_argument('-t', '--tile', type=int, default=0, help='Tile size, 0 for no tile during testing')
parser.add_argument('--tile_pad', type=int, default=10, help='Tile padding')
parser.add_argument('--pre_pad', type=int, default=0, help='Pre padding size at each border')
parser.add_argument('--face_enhance', action='store_true', help='Use GFPGAN to enhance face')
parser.add_argument('--half', action='store_true', help='Use half precision during inference')
parser.add_argument('-v', '--video', action='store_true', help='Output a video using ffmpeg')
parser.add_argument('-a', '--audio', action='store_true', help='Keep audio')
parser.add_argument('--fps', type=float, default=None, help='FPS of the output video')
parser.add_argument('--consumer', type=int, default=4, help='Number of IO consumers')
parser.add_argument(
'--alpha_upsampler',
type=str,
default='realesrgan',
help='The upsampler for the alpha channels. Options: realesrgan | bicubic')
parser.add_argument(
'--ext',
type=str,
default='auto',
help='Image extension. Options: auto | jpg | png, auto means using the same extension as inputs')
args = parser.parse_args()
# ---------------------- determine models according to model names ---------------------- #
args.model_name = args.model_name.split('.')[0]
if args.model_name in ['RealESRGAN_x4plus', 'RealESRNet_x4plus']: # x4 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif args.model_name in ['RealESRGAN_x4plus_anime_6B']: # x4 RRDBNet model with 6 blocks
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
elif args.model_name in ['RealESRGAN_x2plus']: # x2 RRDBNet model
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
elif args.model_name in [
'RealESRGANv2-anime-xsx2', 'RealESRGANv2-animevideo-xsx2-nousm', 'RealESRGANv2-animevideo-xsx2'
]: # x2 VGG-style model (XS size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=2, act_type='prelu')
netscale = 2
elif args.model_name in [
'RealESRGANv2-anime-xsx4', 'RealESRGANv2-animevideo-xsx4-nousm', 'RealESRGANv2-animevideo-xsx4'
]: # x4 VGG-style model (XS size)
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
netscale = 4
# ---------------------- determine model paths ---------------------- #
model_path = os.path.join('experiments/pretrained_models', args.model_name + '.pth')
if not os.path.isfile(model_path):
model_path = os.path.join('realesrgan/weights', args.model_name + '.pth')
if not os.path.isfile(model_path):
raise ValueError(f'Model {args.model_name} does not exist.')
# restorer
upsampler = RealESRGANer(
scale=netscale,
model_path=model_path,
model=model,
tile=args.tile,
tile_pad=args.tile_pad,
pre_pad=args.pre_pad,
half=args.half)
if args.face_enhance: # Use GFPGAN for face enhancement
from gfpgan import GFPGANer
face_enhancer = GFPGANer(
model_path='https://github.com/TencentARC/GFPGAN/releases/download/v0.2.0/GFPGANCleanv1-NoCE-C2.pth',
upscale=args.outscale,
arch='clean',
channel_multiplier=2,
bg_upsampler=upsampler)
os.makedirs(args.output, exist_ok=True)
# for saving restored frames
save_frame_folder = os.path.join(args.output, 'frames_tmpout')
os.makedirs(save_frame_folder, exist_ok=True)
if mimetypes.guess_type(args.input)[0].startswith('video'): # is a video file
video_name = os.path.splitext(os.path.basename(args.input))[0]
frame_folder = os.path.join('tmp_frames', video_name)
os.makedirs(frame_folder, exist_ok=True)
# use ffmpeg to extract frames
os.system(f'ffmpeg -i {args.input} -qscale:v 1 -qmin 1 -qmax 1 -vsync 0 {frame_folder}/frame%08d.png')
# get image path list
paths = sorted(glob.glob(os.path.join(frame_folder, '*')))
if args.video:
if args.fps is None:
# get input video fps
import ffmpeg
probe = ffmpeg.probe(args.input)
video_streams = [stream for stream in probe['streams'] if stream['codec_type'] == 'video']
args.fps = eval(video_streams[0]['avg_frame_rate'])
elif mimetypes.guess_type(args.input)[0].startswith('image'): # is an image file
paths = [args.input]
video_name = 'video'
else:
paths = sorted(glob.glob(os.path.join(args.input, '*')))
video_name = 'video'
timer = AvgTimer()
timer.start()
pbar = tqdm(total=len(paths), unit='frame', desc='inference')
# set up prefetch reader
reader = PrefetchReader(paths, num_prefetch_queue=4)
reader.start()
que = queue.Queue()
consumers = [IOConsumer(args, que, f'IO_{i}') for i in range(args.consumer)]
for consumer in consumers:
consumer.start()
for idx, (path, img) in enumerate(zip(paths, reader)):
imgname, extension = os.path.splitext(os.path.basename(path))
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
else:
img_mode = None
try:
if args.face_enhance:
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = upsampler.enhance(img, outscale=args.outscale)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set --tile with a smaller number.')
else:
if args.ext == 'auto':
extension = extension[1:]
else:
extension = args.ext
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension = 'png'
save_path = os.path.join(save_frame_folder, f'{imgname}_out.{extension}')
que.put({'output': output, 'save_path': save_path})
pbar.update(1)
torch.cuda.synchronize()
timer.record()
avg_fps = 1. / (timer.get_avg_time() + 1e-7)
pbar.set_description(f'idx {idx}, fps {avg_fps:.2f}')
for _ in range(args.consumer):
que.put('quit')
for consumer in consumers:
consumer.join()
pbar.close()
# merge frames to video
if args.video:
video_save_path = os.path.join(args.output, f'{video_name}_{args.suffix}.mp4')
if args.audio:
os.system(
f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} -i {args.input}'
f' -map 0:v:0 -map 1:a:0 -c:a copy -c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
else:
os.system(f'ffmpeg -r {args.fps} -i {save_frame_folder}/frame%08d_out.{extension} '
f'-c:v libx264 -r {args.fps} -pix_fmt yuv420p {video_save_path}')
# delete tmp file
shutil.rmtree(save_frame_folder)
if os.path.isdir(frame_folder):
shutil.rmtree(frame_folder)
if __name__ == '__main__':
main()
|