Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,14 @@ import numpy as np
|
|
5 |
import os
|
6 |
import requests
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
# Load the model file
|
10 |
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
@@ -16,41 +24,35 @@ if not os.path.exists(model_path):
|
|
16 |
f.write(response.content)
|
17 |
|
18 |
# Load the document segmentation model
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
def process_image(image):
|
23 |
try:
|
24 |
# Convert image to the format YOLO model expects
|
25 |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
result = results[0] # Get the first (and usually only) result
|
28 |
|
29 |
# Extract annotated image from results
|
30 |
-
annotated_img = result.plot()
|
31 |
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
|
32 |
|
33 |
# Prepare detected areas and labels as text output
|
34 |
detected_areas_labels = "\n".join(
|
35 |
-
[f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes]
|
36 |
)
|
37 |
except Exception as e:
|
38 |
return None, f"Error during processing: {e}" # Error handling
|
39 |
|
40 |
return annotated_img, detected_areas_labels
|
41 |
|
42 |
-
#
|
43 |
-
with gr.Blocks() as interface:
|
44 |
-
gr.Markdown("### Document Segmentation using YOLOv8")
|
45 |
-
input_image = gr.Image(type="pil", label="Input Image")
|
46 |
-
output_image = gr.Image(type="pil", label="Annotated Image")
|
47 |
-
output_text = gr.Textbox(label="Detected Areas and Labels")
|
48 |
-
|
49 |
-
gr.Button("Run").click(
|
50 |
-
fn=process_image,
|
51 |
-
inputs=input_image,
|
52 |
-
outputs=[output_image, output_text]
|
53 |
-
)
|
54 |
-
|
55 |
-
# Launch the interface (remove the conditional launch)
|
56 |
-
interface.launch(share=True) # Allow sharing for easier debugging
|
|
|
5 |
import os
|
6 |
import requests
|
7 |
import torch
|
8 |
+
import huggingface_hub
|
9 |
+
|
10 |
+
# Initialize ZeroGPU
|
11 |
+
zero_gpu_is_available = huggingface_hub.utils.is_google_colab() or huggingface_hub.utils.is_notebook()
|
12 |
+
if zero_gpu_is_available:
|
13 |
+
from accelerate import Accelerator
|
14 |
+
accelerator = Accelerator()
|
15 |
+
|
16 |
|
17 |
# Load the model file
|
18 |
model_path = "yolov8x-doclaynet-epoch64-imgsz640-initiallr1e-4-finallr1e-5.pt"
|
|
|
24 |
f.write(response.content)
|
25 |
|
26 |
# Load the document segmentation model
|
27 |
+
docseg_model = YOLO(model_path)
|
28 |
+
|
29 |
+
if zero_gpu_is_available:
|
30 |
+
docseg_model.to(accelerator.device) # Put the model on the accelerator's device.
|
31 |
+
|
32 |
|
33 |
def process_image(image):
|
34 |
try:
|
35 |
# Convert image to the format YOLO model expects
|
36 |
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
37 |
+
|
38 |
+
# If Zero GPU, move image to accelerator
|
39 |
+
if zero_gpu_is_available:
|
40 |
+
image = torch.from_numpy(image).to(accelerator.device)
|
41 |
+
|
42 |
+
results = docseg_model.predict(image)
|
43 |
result = results[0] # Get the first (and usually only) result
|
44 |
|
45 |
# Extract annotated image from results
|
46 |
+
annotated_img = result.plot()
|
47 |
annotated_img = cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)
|
48 |
|
49 |
# Prepare detected areas and labels as text output
|
50 |
detected_areas_labels = "\n".join(
|
51 |
+
[f"{box.label.upper()}: {box.conf:.2f}" for box in result.boxes]
|
52 |
)
|
53 |
except Exception as e:
|
54 |
return None, f"Error during processing: {e}" # Error handling
|
55 |
|
56 |
return annotated_img, detected_areas_labels
|
57 |
|
58 |
+
# The rest of the code remains the same (Gradio interface)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|