Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,106 @@
|
|
1 |
-
# Filename: app.py
|
2 |
import streamlit as st
|
3 |
-
|
|
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
|
8 |
-
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
result = classifier(user_input)[0]
|
18 |
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
else:
|
28 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
|
7 |
+
# Specify the directory where you'll save your fine-tuned model
|
8 |
+
FINE_TUNED_MODEL_DIR = "./fine_tuned_sms_spam_model"
|
9 |
|
10 |
+
# Load model and tokenizer
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("wesleyacheng/sms-spam-classification-with-bert")
|
12 |
+
model = AutoModelForSequenceClassification.from_pretrained("wesleyacheng/sms-spam-classification-with-bert")
|
13 |
|
14 |
+
# Create a Streamlit app
|
15 |
+
st.title("SMS Spam Classification")
|
16 |
|
17 |
+
def classify_spam_or_ham(text):
|
18 |
+
# Tokenize input text
|
19 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
|
|
20 |
|
21 |
+
# Perform classification
|
22 |
+
with torch.no_grad():
|
23 |
+
outputs = model(**inputs)
|
24 |
|
25 |
+
# Get the predicted label
|
26 |
+
predicted_label = "Spam" if outputs.logits[0][1] > outputs.logits[0][0] else "Not-Spam"
|
27 |
+
|
28 |
+
return predicted_label
|
29 |
+
|
30 |
+
st.write("Single SMS Example:")
|
31 |
+
|
32 |
+
|
33 |
+
# Function to classify a single SMS
|
34 |
+
def classify_single_sms(text):
|
35 |
+
if isinstance(text, str): # Check if text is a string
|
36 |
+
prediction = classify_spam_or_ham(text)
|
37 |
+
st.write(f"SMS: {text}")
|
38 |
+
st.write(f"Prediction: {prediction}")
|
39 |
+
st.write("--------")
|
40 |
+
else:
|
41 |
+
st.warning("Skipping non-text data.")
|
42 |
+
|
43 |
+
# Main Streamlit code for CSV file upload
|
44 |
+
st.sidebar.header("Upload CSV File")
|
45 |
+
uploaded_file = st.sidebar.file_uploader("Upload a CSV file with SMS messages:", type=["csv"])
|
46 |
+
|
47 |
+
if uploaded_file is not None:
|
48 |
+
st.sidebar.write("Classifying SMS messages in the uploaded file...")
|
49 |
+
try:
|
50 |
+
df = pd.read_csv(uploaded_file, encoding='latin1') # Specify the appropriate encoding
|
51 |
+
except UnicodeDecodeError:
|
52 |
+
st.sidebar.error("Error: Unable to decode the CSV file. Please make sure it is in the correct encoding.")
|
53 |
+
else:
|
54 |
+
# Allow the user to select the column containing SMS messages
|
55 |
+
selected_column = st.sidebar.selectbox("Select the SMS column:", df.columns)
|
56 |
+
|
57 |
+
if df[selected_column].dtype == "object":
|
58 |
+
st.write("Classifications:")
|
59 |
+
for sms_text in df[selected_column]:
|
60 |
+
classify_single_sms(sms_text)
|
61 |
else:
|
62 |
+
st.sidebar.error("Selected column does not contain text data and cannot be tokenized.")
|
63 |
+
|
64 |
+
st.sidebar.write("Classification completed!")
|
65 |
+
|
66 |
+
st.sidebar.write("Or classify a single SMS:")
|
67 |
+
user_input = st.sidebar.text_area("Enter an SMS message:")
|
68 |
+
if st.sidebar.button("Classify"):
|
69 |
+
if user_input:
|
70 |
+
classify_single_sms(user_input)
|
71 |
+
else:
|
72 |
+
st.sidebar.warning("Please enter an SMS message.")
|
73 |
+
|
74 |
+
st.write("Or fine-tune the model:")
|
75 |
+
if st.button("Fine-Tune Model"):
|
76 |
+
if uploaded_file is not None and selected_column and df[selected_column].dtype == "object":
|
77 |
+
# Use the data from the uploaded CSV file as the fine-tuning dataset
|
78 |
+
custom_dataset = df[selected_column]
|
79 |
+
|
80 |
+
# Specify your fine-tuning training arguments
|
81 |
+
training_args = TrainingArguments(
|
82 |
+
output_dir=FINE_TUNED_MODEL_DIR,
|
83 |
+
overwrite_output_dir=True,
|
84 |
+
per_device_train_batch_size=8,
|
85 |
+
num_train_epochs=3,
|
86 |
+
)
|
87 |
+
|
88 |
+
trainer = Trainer(
|
89 |
+
model=model,
|
90 |
+
args=training_args,
|
91 |
+
train_dataset=custom_dataset,
|
92 |
+
)
|
93 |
+
|
94 |
+
# Fine-tune the model
|
95 |
+
trainer.train()
|
96 |
|
97 |
+
# Save the fine-tuned model
|
98 |
+
model.save_pretrained(FINE_TUNED_MODEL_DIR)
|
99 |
+
tokenizer.save_pretrained(FINE_TUNED_MODEL_DIR)
|
100 |
+
st.write("Model has been fine-tuned and saved.")
|
101 |
+
elif not uploaded_file:
|
102 |
+
st.warning("Please upload a CSV file before fine-tuning.")
|
103 |
+
elif not selected_column:
|
104 |
+
st.warning("Please select the SMS column before fine-tuning.")
|
105 |
+
else:
|
106 |
+
st.warning("The selected column does not contain text data and cannot be used for fine-tuning.")
|