Quα»³nh PhΓΉng commited on
Commit
589b7f1
Β·
0 Parent(s):
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. .DS_Store +0 -0
  2. .gitattributes +38 -0
  3. .gitignore +115 -0
  4. DejaVuSansMono.ttf +0 -0
  5. README.md +12 -0
  6. __init__.py +0 -0
  7. app.py +785 -0
  8. environment.yaml +29 -0
  9. example_component.py +805 -0
  10. gligen/.DS_Store +0 -0
  11. gligen/SD_input_conv_weight_bias.pth +3 -0
  12. gligen/__init__.py +10 -0
  13. gligen/create_meta.py +170 -0
  14. gligen/distributed.py +122 -0
  15. gligen/evaluator.py +225 -0
  16. gligen/ldm/.DS_Store +0 -0
  17. gligen/ldm/data/.DS_Store +0 -0
  18. gligen/ldm/data/__init__.py +0 -0
  19. gligen/ldm/data/base.py +23 -0
  20. gligen/ldm/data/imagenet.py +394 -0
  21. gligen/ldm/data/imagenet_clsidx_to_label.txt +1000 -0
  22. gligen/ldm/data/imagenet_train_hr_indices.p +3 -0
  23. gligen/ldm/data/imagenet_val_hr_indices.p +3 -0
  24. gligen/ldm/data/index_synset.yaml +1000 -0
  25. gligen/ldm/data/lsun.py +92 -0
  26. gligen/ldm/lr_scheduler.py +98 -0
  27. gligen/ldm/modules/.DS_Store +0 -0
  28. gligen/ldm/modules/attention.py +431 -0
  29. gligen/ldm/modules/diffusionmodules/__init__.py +0 -0
  30. gligen/ldm/modules/diffusionmodules/canny_grounding_downsampler.py +31 -0
  31. gligen/ldm/modules/diffusionmodules/canny_grounding_net.py +65 -0
  32. gligen/ldm/modules/diffusionmodules/convnext.py +203 -0
  33. gligen/ldm/modules/diffusionmodules/depth_grounding_downsampler.py +32 -0
  34. gligen/ldm/modules/diffusionmodules/depth_grounding_net.py +65 -0
  35. gligen/ldm/modules/diffusionmodules/grounding_net_example.py +22 -0
  36. gligen/ldm/modules/diffusionmodules/hed_grounding_downsampler.py +23 -0
  37. gligen/ldm/modules/diffusionmodules/hed_grounding_net.py +65 -0
  38. gligen/ldm/modules/diffusionmodules/keypoint_grounding_net.py +61 -0
  39. gligen/ldm/modules/diffusionmodules/model.py +835 -0
  40. gligen/ldm/modules/diffusionmodules/normal_grounding_downsampler.py +29 -0
  41. gligen/ldm/modules/diffusionmodules/normal_grounding_net.py +65 -0
  42. gligen/ldm/modules/diffusionmodules/openaimodel.py +562 -0
  43. gligen/ldm/modules/diffusionmodules/pseudo_example.py +52 -0
  44. gligen/ldm/modules/diffusionmodules/resnet.py +337 -0
  45. gligen/ldm/modules/diffusionmodules/sem_grounding_downsampler.py +29 -0
  46. gligen/ldm/modules/diffusionmodules/sem_grounding_net.py +68 -0
  47. gligen/ldm/modules/diffusionmodules/text_grounding_net.py +50 -0
  48. gligen/ldm/modules/diffusionmodules/text_image_grounding_net.py +68 -0
  49. gligen/ldm/modules/diffusionmodules/util.py +277 -0
  50. gligen/ldm/modules/distributions/__init__.py +0 -0
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.gitattributes ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ gligen/ldm/data/imagenet_train_hr_indices.p filter=lfs diff=lfs merge=lfs -text
36
+ gligen/projection_matrix.pth filter=lfs diff=lfs merge=lfs -text
37
+ gligen/ldm/data/imagenet_val_hr_indices.p filter=lfs diff=lfs merge=lfs -text
38
+ gligen/SD_input_conv_weight_bias.pth filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # IntelliJ project files
2
+ .idea
3
+ *.iml
4
+ out
5
+ gen
6
+
7
+ ### Vim template
8
+ [._]*.s[a-w][a-z]
9
+ [._]s[a-w][a-z]
10
+ *.un~
11
+ Session.vim
12
+ .netrwhist
13
+ *~
14
+
15
+ ### IPythonNotebook template
16
+ # Temporary data
17
+ .ipynb_checkpoints/
18
+
19
+ ### Python template
20
+ # Byte-compiled / optimized / DLL files
21
+ __pycache__/
22
+ *.py[cod]
23
+ *$py.class
24
+
25
+ # C extensions
26
+ *.so
27
+
28
+ # Distribution / packaging
29
+ .Python
30
+ env/
31
+ build/
32
+ develop-eggs/
33
+ dist/
34
+ downloads/
35
+ eggs/
36
+ .eggs/
37
+ #lib/
38
+ #lib64/
39
+ parts/
40
+ sdist/
41
+ var/
42
+ *.egg-info/
43
+ .installed.cfg
44
+ *.egg
45
+
46
+ # PyInstaller
47
+ # Usually these files are written by a python script from a template
48
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
49
+ *.manifest
50
+ *.spec
51
+
52
+ # Installer logs
53
+ pip-log.txt
54
+ pip-delete-this-directory.txt
55
+
56
+ # Unit test / coverage reports
57
+ htmlcov/
58
+ .tox/
59
+ .coverage
60
+ .coverage.*
61
+ .cache
62
+ nosetests.xml
63
+ coverage.xml
64
+ *,cover
65
+
66
+ # Translations
67
+ *.mo
68
+ *.pot
69
+
70
+ # Django stuff:
71
+ *.log
72
+
73
+ # Sphinx documentation
74
+ docs/_build/
75
+
76
+ # PyBuilder
77
+ target/
78
+
79
+ *.ipynb
80
+ *.params
81
+ # *.json
82
+ .vscode/
83
+ *.code-workspace/
84
+
85
+ lib/pycocotools/_mask.c
86
+ lib/nms/cpu_nms.c
87
+
88
+ OUTPUT
89
+ OUTPUT/*
90
+ models/*
91
+ DATASET
92
+ DATASET/*
93
+ external/
94
+ MODELS
95
+ MODELS/*
96
+ gradio_cached_examples/*
97
+
98
+ kill.sh
99
+
100
+ draws/
101
+ #:wq
102
+ #plot/figs
103
+
104
+ *venv/*
105
+
106
+ # images
107
+ # images/*
108
+
109
+ create_samples/
110
+ create_samples/*
111
+
112
+ ckpts/*
113
+
114
+ **/__pycache__/*
115
+ **/__pycache__
DejaVuSansMono.ttf ADDED
Binary file (341 kB). View file
 
README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Attention Refocusing
3
+ emoji: πŸŒ–
4
+ colorFrom: yellow
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 3.34.0
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
__init__.py ADDED
File without changes
app.py ADDED
@@ -0,0 +1,785 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from omegaconf import OmegaConf
4
+ from gligen.task_grounded_generation import grounded_generation_box, load_ckpt, load_common_ckpt
5
+
6
+ import json
7
+ import numpy as np
8
+ from PIL import Image, ImageDraw, ImageFont
9
+ from functools import partial
10
+ from collections import Counter
11
+ import math
12
+ import gc
13
+
14
+ from gradio import processing_utils
15
+ from typing import Optional
16
+
17
+ import warnings
18
+
19
+ from datetime import datetime
20
+
21
+ from example_component import create_examples
22
+
23
+ from huggingface_hub import hf_hub_download
24
+ hf_hub_download = partial(hf_hub_download, library_name="gligen_demo")
25
+ import cv2
26
+ import sys
27
+ sys.tracebacklimit = 0
28
+
29
+
30
+ def load_from_hf(repo_id, filename='diffusion_pytorch_model.bin', subfolder=None):
31
+ cache_file = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder)
32
+ return torch.load(cache_file, map_location='cpu')
33
+
34
+ def load_ckpt_config_from_hf(modality):
35
+ ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='model')
36
+ config = load_from_hf('gligen/demo_ckpts_legacy', filename=f'{modality}.pth', subfolder='config')
37
+ return ckpt, config
38
+
39
+
40
+ def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None):
41
+ pretrained_ckpt_gligen, config = load_ckpt_config_from_hf(modality)
42
+ config = OmegaConf.create( config["_content"] ) # config used in training
43
+ config.alpha_scale = 1.0
44
+
45
+ if common_instances is None:
46
+ common_ckpt = load_from_hf('gligen/demo_ckpts_legacy', filename=f'common.pth', subfolder='model')
47
+ common_instances = load_common_ckpt(config, common_ckpt)
48
+
49
+ loaded_model_list = load_ckpt(config, pretrained_ckpt_gligen, common_instances)
50
+
51
+ return loaded_model_list, common_instances
52
+
53
+
54
+ class Instance:
55
+ def __init__(self, capacity = 2):
56
+ self.model_type = 'base'
57
+ self.loaded_model_list = {}
58
+ self.counter = Counter()
59
+ self.global_counter = Counter()
60
+ self.loaded_model_list['base'], self.common_instances = ckpt_load_helper(
61
+ 'gligen-generation-text-box',
62
+ is_inpaint=False, is_style=False, common_instances=None
63
+ )
64
+ self.capacity = capacity
65
+
66
+ def _log(self, model_type, batch_size, instruction, phrase_list):
67
+ self.counter[model_type] += 1
68
+ self.global_counter[model_type] += 1
69
+ current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
70
+ print('[{}] Current: {}, All: {}. Samples: {}, prompt: {}, phrases: {}'.format(
71
+ current_time, dict(self.counter), dict(self.global_counter), batch_size, instruction, phrase_list
72
+ ))
73
+
74
+ def get_model(self, model_type, batch_size, instruction, phrase_list):
75
+ if model_type in self.loaded_model_list:
76
+ self._log(model_type, batch_size, instruction, phrase_list)
77
+ return self.loaded_model_list[model_type]
78
+
79
+ if self.capacity == len(self.loaded_model_list):
80
+ least_used_type = self.counter.most_common()[-1][0]
81
+ del self.loaded_model_list[least_used_type]
82
+ del self.counter[least_used_type]
83
+ gc.collect()
84
+ torch.cuda.empty_cache()
85
+
86
+ self.loaded_model_list[model_type] = self._get_model(model_type)
87
+ self._log(model_type, batch_size, instruction, phrase_list)
88
+ return self.loaded_model_list[model_type]
89
+
90
+ def _get_model(self, model_type):
91
+ if model_type == 'base':
92
+ return ckpt_load_helper(
93
+ 'gligen-generation-text-box',
94
+ is_inpaint=False, is_style=False, common_instances=self.common_instances
95
+ )[0]
96
+ elif model_type == 'inpaint':
97
+ return ckpt_load_helper(
98
+ 'gligen-inpainting-text-box',
99
+ is_inpaint=True, is_style=False, common_instances=self.common_instances
100
+ )[0]
101
+ elif model_type == 'style':
102
+ return ckpt_load_helper(
103
+ 'gligen-generation-text-image-box',
104
+ is_inpaint=False, is_style=True, common_instances=self.common_instances
105
+ )[0]
106
+
107
+ assert False
108
+
109
+ instance = Instance()
110
+
111
+
112
+ def load_clip_model():
113
+ from transformers import CLIPProcessor, CLIPModel
114
+ version = "openai/clip-vit-large-patch14"
115
+ model = CLIPModel.from_pretrained(version).cuda()
116
+ processor = CLIPProcessor.from_pretrained(version)
117
+
118
+ return {
119
+ 'version': version,
120
+ 'model': model,
121
+ 'processor': processor,
122
+ }
123
+
124
+ clip_model = load_clip_model()
125
+
126
+
127
+ class ImageMask(gr.components.Image):
128
+ """
129
+ Sets: source="canvas", tool="sketch"
130
+ """
131
+
132
+ is_template = True
133
+
134
+ def __init__(self, **kwargs):
135
+ super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
136
+
137
+ def preprocess(self, x):
138
+ if x is None:
139
+ return x
140
+ if self.tool == "sketch" and self.source in ["upload", "webcam"] and type(x) != dict:
141
+
142
+ decode_image = processing_utils.decode_base64_to_image(x)
143
+ width, height = decode_image.size
144
+
145
+ mask = np.zeros((height, width, 4), dtype=np.uint8)
146
+
147
+ mask[..., -1] = 255
148
+ mask = self.postprocess(mask)
149
+ x = {'image': x, 'mask': mask}
150
+ print('vao preprocess-------------------------')
151
+ hh = super().preprocess(x)
152
+
153
+ return hh
154
+
155
+
156
+ class Blocks(gr.Blocks):
157
+
158
+ def __init__(
159
+ self,
160
+ theme: str = "default",
161
+ analytics_enabled: Optional[bool] = None,
162
+ mode: str = "blocks",
163
+ title: str = "Gradio",
164
+ css: Optional[str] = None,
165
+ **kwargs,
166
+ ):
167
+
168
+ self.extra_configs = {
169
+ 'thumbnail': kwargs.pop('thumbnail', ''),
170
+ 'url': kwargs.pop('url', 'https://gradio.app/'),
171
+ 'creator': kwargs.pop('creator', '@teamGradio'),
172
+ }
173
+
174
+ super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
175
+ warnings.filterwarnings("ignore")
176
+
177
+ def get_config_file(self):
178
+ config = super(Blocks, self).get_config_file()
179
+
180
+ for k, v in self.extra_configs.items():
181
+ config[k] = v
182
+
183
+ return config
184
+
185
+ '''
186
+ inference model
187
+ '''
188
+
189
+ # @torch.no_grad()
190
+ def inference(task, language_instruction, phrase_list, location_list, inpainting_boxes_nodrop, image,
191
+ alpha_sample, guidance_scale, batch_size,
192
+ fix_seed, rand_seed, actual_mask, style_image,
193
+ *args, **kwargs):
194
+ # import pdb; pdb.set_trace()
195
+
196
+ # grounding_instruction = json.loads(grounding_instruction)
197
+ # phrase_list, location_list = [], []
198
+ # for k, v in grounding_instruction.items():
199
+ # phrase_list.append(k)
200
+ # location_list.append(v)
201
+
202
+ placeholder_image = Image.open('images/teddy.jpg').convert("RGB")
203
+ image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
204
+
205
+ batch_size = int(batch_size)
206
+ if not 1 <= batch_size <= 4:
207
+ batch_size = 1
208
+
209
+ if style_image == None:
210
+ has_text_mask = 1
211
+ has_image_mask = 0 # then we hack above 'image_list'
212
+ else:
213
+ valid_phrase_len = len(phrase_list)
214
+
215
+ phrase_list += ['placeholder']
216
+ has_text_mask = [1]*valid_phrase_len + [0]
217
+
218
+ image_list = [placeholder_image]*valid_phrase_len + [style_image]
219
+ has_image_mask = [0]*valid_phrase_len + [1]
220
+
221
+ location_list += [ [0.0, 0.0, 1, 0.01] ] # style image grounding location
222
+
223
+ instruction = dict(
224
+ prompt = language_instruction,
225
+ phrases = phrase_list,
226
+ images = image_list,
227
+ locations = location_list,
228
+ alpha_type = [alpha_sample, 0, 1.0 - alpha_sample],
229
+ has_text_mask = has_text_mask,
230
+ has_image_mask = has_image_mask,
231
+ save_folder_name = language_instruction,
232
+ guidance_scale = guidance_scale,
233
+ batch_size = batch_size,
234
+ fix_seed = bool(fix_seed),
235
+ rand_seed = int(rand_seed),
236
+ actual_mask = actual_mask,
237
+ inpainting_boxes_nodrop = inpainting_boxes_nodrop,
238
+ )
239
+
240
+ get_model = partial(instance.get_model,
241
+ batch_size=batch_size,
242
+ instruction=language_instruction,
243
+ phrase_list=phrase_list)
244
+
245
+ with torch.autocast(device_type='cuda', dtype=torch.float16):
246
+ if task == 'User provide boxes' or 'Available boxes':
247
+ if style_image == None:
248
+ return grounded_generation_box(get_model('base'), instruction, *args, **kwargs)
249
+ else:
250
+ return grounded_generation_box(get_model('style'), instruction, *args, **kwargs)
251
+
252
+
253
+ def draw_box(boxes=[], texts=[], img=None):
254
+ if len(boxes) == 0 and img is None:
255
+ return None
256
+
257
+ if img is None:
258
+ img = Image.new('RGB', (512, 512), (255, 255, 255))
259
+ colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
260
+ draw = ImageDraw.Draw(img)
261
+ font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
262
+ for bid, box in enumerate(boxes):
263
+ draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
264
+ anno_text = texts[bid]
265
+ draw.rectangle([box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]], outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
266
+ draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size*1.2)], anno_text, font=font, fill=(255,255,255))
267
+ return img
268
+
269
+ def get_concat(ims):
270
+ if len(ims) == 1:
271
+ n_col = 1
272
+ else:
273
+ n_col = 2
274
+ n_row = math.ceil(len(ims) / 2)
275
+ dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
276
+ for i, im in enumerate(ims):
277
+ row_id = i // n_col
278
+ col_id = i % n_col
279
+ dst.paste(im, (im.width * col_id, im.height * row_id))
280
+ return dst
281
+
282
+
283
+ def auto_append_grounding(language_instruction, grounding_texts):
284
+ for grounding_text in grounding_texts:
285
+ if grounding_text.lower() not in language_instruction.lower() and grounding_text != 'auto':
286
+ language_instruction += "; " + grounding_text
287
+ return language_instruction
288
+
289
+
290
+
291
+
292
+ def generate(task, language_instruction, grounding_texts, sketch_pad,
293
+ alpha_sample, guidance_scale, batch_size,
294
+ fix_seed, rand_seed, use_actual_mask, append_grounding, style_cond_image,
295
+ state):
296
+
297
+ if 'boxes' not in state:
298
+ state['boxes'] = []
299
+
300
+ boxes = state['boxes']
301
+ grounding_texts = [x.strip() for x in grounding_texts.split(';')]
302
+ # assert len(boxes) == len(grounding_texts)
303
+ if len(boxes) != len(grounding_texts):
304
+ if len(boxes) < len(grounding_texts):
305
+ raise ValueError("""The number of boxes should be equal to the number of grounding objects.
306
+ Number of boxes drawn: {}, number of grounding tokens: {}.
307
+ Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
308
+ grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
309
+
310
+ boxes = (np.asarray(boxes) / 512).tolist()
311
+ grounding_instruction = json.dumps({obj: box for obj,box in zip(grounding_texts, boxes)})
312
+ image = None
313
+ actual_mask = None
314
+
315
+
316
+ if append_grounding:
317
+ language_instruction = auto_append_grounding(language_instruction, grounding_texts)
318
+
319
+ gen_images, gen_overlays = inference(
320
+ task, language_instruction, grounding_texts,boxes, boxes, image,
321
+ alpha_sample, guidance_scale, batch_size,
322
+ fix_seed, rand_seed, actual_mask, style_cond_image, clip_model=clip_model,
323
+ )
324
+ blank_samples = batch_size % 2 if batch_size > 1 else 0
325
+ gen_images = [gr.Image.update(value=x, visible=True) for i,x in enumerate(gen_images)] \
326
+ + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
327
+ + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
328
+
329
+ return gen_images + [state]
330
+
331
+
332
+ def binarize(x):
333
+ return (x != 0).astype('uint8') * 255
334
+ def binarize_2(x):
335
+ gray_image = cv2.cvtColor(x, cv2.COLOR_BGR2GRAY)
336
+ return (gray_image!=255).astype('uint8') * 255
337
+
338
+ def sized_center_crop(img, cropx, cropy):
339
+ y, x = img.shape[:2]
340
+ startx = x // 2 - (cropx // 2)
341
+ starty = y // 2 - (cropy // 2)
342
+ return img[starty:starty+cropy, startx:startx+cropx]
343
+
344
+ def sized_center_fill(img, fill, cropx, cropy):
345
+ y, x = img.shape[:2]
346
+ startx = x // 2 - (cropx // 2)
347
+ starty = y // 2 - (cropy // 2)
348
+ img[starty:starty+cropy, startx:startx+cropx] = fill
349
+ return img
350
+
351
+ def sized_center_mask(img, cropx, cropy):
352
+ y, x = img.shape[:2]
353
+ startx = x // 2 - (cropx // 2)
354
+ starty = y // 2 - (cropy // 2)
355
+ center_region = img[starty:starty+cropy, startx:startx+cropx].copy()
356
+ img = (img * 0.2).astype('uint8')
357
+ img[starty:starty+cropy, startx:startx+cropx] = center_region
358
+ return img
359
+
360
+ def center_crop(img, HW=None, tgt_size=(512, 512)):
361
+ if HW is None:
362
+ H, W = img.shape[:2]
363
+ HW = min(H, W)
364
+ img = sized_center_crop(img, HW, HW)
365
+ img = Image.fromarray(img)
366
+ img = img.resize(tgt_size)
367
+ return np.array(img)
368
+
369
+ def draw(task, input, grounding_texts, new_image_trigger, state, generate_parsed, box_image):
370
+ print('input', generate_parsed)
371
+
372
+ if type(input) == dict:
373
+ image = input['image']
374
+ mask = input['mask']
375
+ if generate_parsed==1:
376
+ generate_parsed = 0
377
+ # import pdb; pdb.set_trace()
378
+ print('do nothing')
379
+ print('boxes', box_image.size)
380
+ return [box_image, new_image_trigger, 1., state, generate_parsed]
381
+
382
+ else:
383
+ mask = input
384
+
385
+ if mask.ndim == 3:
386
+ mask = mask[..., 0]
387
+
388
+ image_scale = 1.0
389
+
390
+ print('vao draw--------------------')
391
+ mask = binarize(mask)
392
+ if mask.shape != (512, 512):
393
+ # assert False, "should not receive any non- 512x512 masks."
394
+ if 'original_image' in state and state['original_image'].shape[:2] == mask.shape:
395
+ mask = center_crop(mask, state['inpaint_hw'])
396
+ image = center_crop(state['original_image'], state['inpaint_hw'])
397
+ else:
398
+ mask = np.zeros((512, 512), dtype=np.uint8)
399
+ mask = binarize(mask)
400
+
401
+ if type(mask) != np.ndarray:
402
+ mask = np.array(mask)
403
+ #
404
+ if mask.sum() == 0:
405
+ state = {}
406
+ print('delete state')
407
+
408
+ if True:
409
+ image = None
410
+ else:
411
+ image = Image.fromarray(image)
412
+
413
+ if 'boxes' not in state:
414
+ state['boxes'] = []
415
+
416
+ if 'masks' not in state or len(state['masks']) == 0 :
417
+ state['masks'] = []
418
+ last_mask = np.zeros_like(mask)
419
+ else:
420
+ last_mask = state['masks'][-1]
421
+
422
+ if type(mask) == np.ndarray and mask.size > 1 :
423
+ diff_mask = mask - last_mask
424
+ else:
425
+ diff_mask = np.zeros([])
426
+
427
+ if diff_mask.sum() > 0:
428
+ x1x2 = np.where(diff_mask.max(0) > 1)[0]
429
+ y1y2 = np.where(diff_mask.max(1) > 1)[0]
430
+ y1, y2 = y1y2.min(), y1y2.max()
431
+ x1, x2 = x1x2.min(), x1x2.max()
432
+
433
+ if (x2 - x1 > 5) and (y2 - y1 > 5):
434
+ state['masks'].append(mask.copy())
435
+ state['boxes'].append((x1, y1, x2, y2))
436
+
437
+ grounding_texts = [x.strip() for x in grounding_texts.split(';')]
438
+ grounding_texts = [x for x in grounding_texts if len(x) > 0]
439
+ if len(grounding_texts) < len(state['boxes']):
440
+ grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(state['boxes']))]
441
+ if box_image is not None: print('boxes', box_image.size)
442
+ box_image = draw_box(state['boxes'], grounding_texts, image)
443
+ generate_parsed = 0
444
+ print('img scale',image_scale)
445
+ return [box_image, new_image_trigger, image_scale, state, generate_parsed]
446
+
447
+ def change_state(bboxes,layout, state, instruction):
448
+
449
+ # mask =
450
+ state['boxes'] = []
451
+ state['masks'] = []
452
+ image = None
453
+ list_boxes = bboxes.split('/')
454
+ result =[]
455
+ for b in list_boxes:
456
+ ints = b[1:-1].split(',')
457
+ l = []
458
+ for i in ints:
459
+ l.append(int(i))
460
+ result.append(l)
461
+ print('run change state')
462
+
463
+ for box in result:
464
+ state['boxes'].append(box)
465
+ grounding_texts = [x.strip() for x in instruction.split(';')]
466
+ grounding_texts = [x for x in grounding_texts if len(x) > 0]
467
+ if len(grounding_texts) < len(result):
468
+ grounding_texts += [f'Obj. {bid+1}' for bid in range(len(grounding_texts), len(result))]
469
+
470
+ box_image = draw_box(result, grounding_texts)
471
+ mask= np.asarray(box_image)
472
+
473
+ mask = binarize_2(mask)
474
+ state['masks'].append(mask.copy())
475
+ # print('done change state', state)
476
+ print('done change state')
477
+ # import pdb; pdb.set_trace()
478
+ return [box_image,state]
479
+
480
+ def example_click(name, grounding_instruction, instruction, bboxes,generate_parsed, trigger_parsed):
481
+
482
+ list_boxes = bboxes.split('/')
483
+ result =[]
484
+
485
+ for b in list_boxes:
486
+ ints = b[1:-1].split(',')
487
+ l = []
488
+ for i in ints:
489
+ l.append(int(i))
490
+ result.append(l)
491
+ print('run change state')
492
+
493
+ box_image = draw_box(result, instruction)
494
+ trigger_parsed += 1
495
+ print('done the example click')
496
+ return [box_image, trigger_parsed]
497
+
498
+ def clear(task, sketch_pad_trigger, batch_size, state, switch_task=False):
499
+
500
+ sketch_pad_trigger = sketch_pad_trigger + 1
501
+ blank_samples = batch_size % 2 if batch_size > 1 else 0
502
+ out_images = [gr.Image.update(value=None, visible=True) for i in range(batch_size)] \
503
+ + [gr.Image.update(value=None, visible=True) for _ in range(blank_samples)] \
504
+ + [gr.Image.update(value=None, visible=False) for _ in range(4 - batch_size - blank_samples)]
505
+ state = {}
506
+ return [None, sketch_pad_trigger, None, 1.0] + out_images + [state]
507
+
508
+ css = """
509
+ #img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
510
+ {
511
+ height: var(--height) !important;
512
+ max-height: var(--height) !important;
513
+ min-height: var(--height) !important;
514
+ }
515
+ #paper-info a {
516
+ color:#008AD7;
517
+ text-decoration: none;
518
+ }
519
+ #paper-info a:hover {
520
+ cursor: pointer;
521
+ text-decoration: none;
522
+ }
523
+ #my_image > div.fixed-height
524
+ {
525
+ height: var(--height) !important;
526
+ }
527
+ """
528
+
529
+ rescale_js = """
530
+ function(x) {
531
+ const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
532
+ let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
533
+ const image_width = root.querySelector('#img2img_image').clientWidth;
534
+ const target_height = parseInt(image_width * image_scale);
535
+ document.body.style.setProperty('--height', `${target_height}px`);
536
+ root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
537
+ root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
538
+ return x;
539
+ }
540
+ """
541
+ # [<a href="https://arxiv.org/abs/2301.07093" target="_blank">Paper</a>]
542
+ with Blocks(
543
+ css=css,
544
+ analytics_enabled=False,
545
+ title="Attention-refocusing demo",
546
+ ) as main:
547
+ description = """<p style="text-align: center; font-weight: bold;">
548
+ <span style="font-size: 28px">Grounded Text-to-Image Synthesis with Attention Refocusing</span>
549
+ <br>
550
+ <span style="font-size: 18px" id="paper-info">
551
+ [<a href="https://attention-refocusing.github.io/" target="_blank">Project Page</a>]
552
+
553
+ [<a href="https://github.com/Attention-Refocusing/attention-refocusing" target="_blank">GitHub</a>]
554
+ </span>
555
+ </p>
556
+ <p>
557
+ To identify the areas of interest based on specific spatial parameters, you need to (1) &#9000;&#65039; input the names of the concepts you're interested in <em> Grounding Instruction</em>, and (2) &#128433;&#65039; draw their corresponding bounding boxes using <em> Sketch Pad</em> -- the parsed boxes will automatically be showed up once you've drawn them.
558
+ <br>
559
+ For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/gligen/demo?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a>
560
+ </p>
561
+ """
562
+ gr.HTML(description)
563
+
564
+ with gr.Row():
565
+ with gr.Column(scale=4):
566
+ sketch_pad_trigger = gr.Number(value=0, visible=False)
567
+ sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
568
+ trigger_stage = gr.Number(value=0, visible=False)
569
+
570
+ init_white_trigger = gr.Number(value=0, visible=False)
571
+ image_scale = gr.Number(value=1.0, elem_id="image_scale", visible=False)
572
+ new_image_trigger = gr.Number(value=0, visible=False)
573
+ text_box = gr.Textbox(visible=False)
574
+ generate_parsed = gr.Number(value=0, visible=False)
575
+
576
+ task = gr.Radio(
577
+ choices=["Available boxes", 'User provide boxes'],
578
+ type="value",
579
+ value="User provide boxes",
580
+ label="Task",
581
+ visible=False
582
+
583
+ )
584
+ language_instruction = gr.Textbox(
585
+ label="Language instruction",
586
+ )
587
+ grounding_instruction = gr.Textbox(
588
+ label="Grounding instruction (Separated by semicolon)",
589
+ )
590
+ with gr.Row():
591
+ sketch_pad = ImageMask(label="Sketch Pad", elem_id="img2img_image")
592
+ out_imagebox = gr.Image(type="pil",elem_id="my_image" ,label="Parsed Sketch Pad", shape=(512,512))
593
+ with gr.Row():
594
+ clear_btn = gr.Button(value='Clear')
595
+ gen_btn = gr.Button(value='Generate')
596
+ with gr.Row():
597
+ parsed_btn = gr.Button(value='generate parsed boxes', visible=False)
598
+
599
+ with gr.Accordion("Advanced Options", open=False):
600
+ with gr.Column():
601
+ alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (Ο„)")
602
+ guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
603
+ batch_size = gr.Slider(minimum=1, maximum=4,visible=False, step=1, value=1, label="Number of Samples")
604
+ append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption")
605
+ use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
606
+ with gr.Row():
607
+ fix_seed = gr.Checkbox(value=True, label="Fixed seed")
608
+ rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=0, label="Seed")
609
+
610
+ with gr.Row():
611
+ use_style_cond = gr.Checkbox(value=False,visible=False, label="Enable Style Condition")
612
+ style_cond_image = gr.Image(type="pil",visible=False, label="Style Condition", interactive=True)
613
+ with gr.Column(scale=4):
614
+ gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated Images</span>')
615
+ with gr.Row():
616
+ out_gen_1 = gr.Image(type="pil", visible=True, show_label=False)
617
+ out_gen_2 = gr.Image(type="pil", visible=False, show_label=False)
618
+ with gr.Row():
619
+ out_gen_3 = gr.Image(type="pil", visible=False, show_label=False)
620
+ out_gen_4 = gr.Image(type="pil", visible=False, show_label=False)
621
+
622
+ state = gr.State({})
623
+
624
+
625
+ class Controller:
626
+ def __init__(self):
627
+ self.calls = 0
628
+ self.tracks = 0
629
+ self.resizes = 0
630
+ self.scales = 0
631
+
632
+ def init_white(self, init_white_trigger):
633
+ self.calls += 1
634
+ return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger+1
635
+
636
+ def change_n_samples(self, n_samples):
637
+ blank_samples = n_samples % 2 if n_samples > 1 else 0
638
+ return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
639
+ + [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
640
+
641
+ controller = Controller()
642
+ main.load(
643
+ lambda x:x+1,
644
+ inputs=sketch_pad_trigger,
645
+ outputs=sketch_pad_trigger,
646
+ queue=False)
647
+
648
+ sketch_pad.edit(
649
+ draw,
650
+ inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state, generate_parsed, out_imagebox],
651
+ outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state, generate_parsed],
652
+ queue=False,
653
+ )
654
+ trigger_stage.change(
655
+ change_state,
656
+ inputs=[text_box,sketch_pad, state, grounding_instruction],
657
+ outputs=[out_imagebox,state],
658
+ queue=True
659
+ )
660
+ grounding_instruction.change(
661
+ draw,
662
+ inputs=[task, sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state, generate_parsed,out_imagebox],
663
+ outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state, generate_parsed],
664
+ queue=False,
665
+ )
666
+ clear_btn.click(
667
+ clear,
668
+ inputs=[task, sketch_pad_trigger, batch_size, state],
669
+ outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
670
+ queue=False)
671
+
672
+ sketch_pad_trigger.change(
673
+ controller.init_white,
674
+ inputs=[init_white_trigger],
675
+ outputs=[sketch_pad, image_scale, init_white_trigger],
676
+ queue=False)
677
+
678
+ gen_btn.click(
679
+ generate,
680
+ inputs=[
681
+ task, language_instruction, grounding_instruction, sketch_pad,
682
+ alpha_sample, guidance_scale, batch_size,
683
+ fix_seed, rand_seed,
684
+ use_actual_mask,
685
+ append_grounding, style_cond_image,
686
+ state,
687
+ ],
688
+ outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
689
+ queue=True
690
+ )
691
+ init_white_trigger.change(
692
+ None,
693
+ None,
694
+ init_white_trigger,
695
+ _js=rescale_js,
696
+ queue=False)
697
+ examples = [
698
+ [
699
+ 'guide_imgs/0_a_cat_on_the_right_of_a_dog.jpg',
700
+ "a cat;a dog",
701
+ "a cat on the right of a dog",
702
+ '(291, 88, 481, 301)/(25, 64, 260, 391)',
703
+ 1, 1
704
+ ],
705
+ [
706
+ 'guide_imgs/0_a_bus_on_the_left_of_a_car.jpg',#'guide_imgs/0_a_bus_on_the_left_of_a_car.jpg',
707
+ "a bus;a car",
708
+ "a bus and a car",
709
+ '(8,128,266,384)/(300,196,502,316)', #'(8,128,266,384)', #/(300,196,502,316)
710
+ 1, 2
711
+ ],
712
+ [
713
+ 'guide_imgs/1_Two_cars_on_the_street..jpg',
714
+ "a car;a car",
715
+ "Two cars on the street.",
716
+ '(34, 98, 247, 264)/(271, 122, 481, 293)',
717
+ 1, 3
718
+ ],
719
+ [
720
+ 'guide_imgs/80_two_apples_lay_side_by_side_on_a_wooden_table,_their_glossy_red_and_green_skins_glinting_in_the_sunlight..jpg',
721
+ "an apple;an apple",
722
+ "two apples lay side by side on a wooden table, their glossy red and green skins glinting in the sunlight.",
723
+ '(40, 210, 235, 450)/(275, 210, 470, 450)',
724
+ 1, 4
725
+ ],
726
+ [
727
+ 'guide_imgs/10_A_banana_on_the_left_of_an_apple..jpg',
728
+ "a banana;an apple",
729
+ "A banana on the left of an apple.",
730
+ '(62, 193, 225, 354)/(300, 184, 432, 329)',
731
+ 1, 5
732
+ ],
733
+ [
734
+ 'guide_imgs/15_A_pizza_on_the_right_of_a_suitcase..jpg',
735
+ "a pizza ;a suitcase",
736
+ "A pizza on the right of a suitcase.",
737
+ '(307, 112, 490, 280)/(41, 120, 244, 270)',
738
+ 1, 6
739
+ ],
740
+ [
741
+ 'guide_imgs/1_A_wine_glass_on_top_of_a_dog..jpg',
742
+ "a wine glass;a dog",
743
+ "A wine glass on top of a dog.",
744
+ '(206, 78, 306, 214)/(137, 222, 367, 432)',
745
+ 1, 7
746
+ ]
747
+ ,
748
+ [
749
+ 'guide_imgs/2_A_bicycle_on_top_of_a_boat..jpg',
750
+ "a bicycle;a boat",
751
+ "A bicycle on top of a boat.",
752
+ '(185, 110, 335, 205)/(111, 228, 401, 373)',
753
+ 1, 8
754
+ ]
755
+ ,
756
+ [
757
+ 'guide_imgs/4_A_laptop_on_top_of_a_teddy_bear..jpg',
758
+ "a laptop;a teddy bear",
759
+ "A laptop on top of a teddy bear.",
760
+ '(180, 70, 332, 210)/(150, 240, 362, 420)',
761
+ 1, 9
762
+ ]
763
+ ,
764
+ [
765
+ 'guide_imgs/0_A_train_on_top_of_a_surfboard..jpg',
766
+ "a train;a surfboard",
767
+ "A train on top of a surfboard.",
768
+ '(130, 80, 385, 240)/(75, 260, 440, 450)',
769
+ 1, 10
770
+ ]
771
+ ]
772
+
773
+ with gr.Column():
774
+
775
+ create_examples(
776
+ examples=examples,
777
+ inputs=[sketch_pad, grounding_instruction,language_instruction , text_box, generate_parsed, trigger_stage],
778
+ outputs=None,
779
+ fn=None,
780
+ cache_examples=False,
781
+
782
+ )
783
+
784
+ main.queue(concurrency_count=1, api_open=False)
785
+ main.launch(share=False, show_api=False, show_error=True, debug=True, server_name="0.0.0.0")
environment.yaml ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: gligen_demo
2
+ channels:
3
+ - xformers/label/dev
4
+ - pytorch
5
+ - defaults
6
+ dependencies:
7
+ - python=3.10.8
8
+ - pip=22.2.2
9
+ - cudatoolkit=11.3
10
+ - pytorch=1.12.1
11
+ - torchvision=0.13.1
12
+ - numpy=1.23.1
13
+ - xformers
14
+ - pip:
15
+ - omegaconf==2.1.1
16
+ - albumentations==1.3.0
17
+ - opencv-python
18
+ - imageio==2.9.0
19
+ - imageio-ffmpeg==0.4.2
20
+ - pytorch-lightning==1.4.2
21
+ - test-tube>=0.7.5
22
+ - streamlit==1.12.1
23
+ - einops==0.3.0
24
+ - git+https://github.com/openai/CLIP.git
25
+ - protobuf~=3.20.1
26
+ - torchmetrics==0.6.0
27
+ - transformers==4.19.2
28
+ - kornia==0.6.0
29
+ - gradio==3.16.0
example_component.py ADDED
@@ -0,0 +1,805 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Defines helper methods useful for loading and caching Interface examples.
3
+ """
4
+ from __future__ import annotations
5
+
6
+ import ast
7
+ import csv
8
+ import inspect
9
+ import os
10
+ import subprocess
11
+ import tempfile
12
+ import threading
13
+ import warnings
14
+ from pathlib import Path
15
+ from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Tuple
16
+
17
+ import matplotlib
18
+ import matplotlib.pyplot as plt
19
+ import numpy as np
20
+ import PIL
21
+ import PIL.Image
22
+
23
+ from gradio import components, processing_utils, routes, utils
24
+ from gradio.context import Context
25
+ from gradio.documentation import document, set_documentation_group
26
+ from gradio.flagging import CSVLogger
27
+
28
+ if TYPE_CHECKING: # Only import for type checking (to avoid circular imports).
29
+ from gradio.components import IOComponent
30
+
31
+ CACHED_FOLDER = "gradio_cached_examples"
32
+ LOG_FILE = "log.csv"
33
+
34
+ set_documentation_group("helpers")
35
+
36
+
37
+ def create_examples(
38
+ examples: List[Any] | List[List[Any]] | str,
39
+ inputs: IOComponent | List[IOComponent],
40
+ outputs: IOComponent | List[IOComponent] | None = None,
41
+ fn: Callable | None = None,
42
+ cache_examples: bool = False,
43
+ examples_per_page: int = 10,
44
+ _api_mode: bool = False,
45
+ label: str | None = None,
46
+ elem_id: str | None = None,
47
+ run_on_click: bool = False,
48
+ preprocess: bool = True,
49
+ postprocess: bool = True,
50
+ batch: bool = False,
51
+ ):
52
+ """Top-level synchronous function that creates Examples. Provided for backwards compatibility, i.e. so that gr.Examples(...) can be used to create the Examples component."""
53
+ examples_obj = Examples(
54
+ examples=examples,
55
+ inputs=inputs,
56
+ outputs=outputs,
57
+ fn=fn,
58
+ cache_examples=cache_examples,
59
+ examples_per_page=examples_per_page,
60
+ _api_mode=_api_mode,
61
+ label=label,
62
+ elem_id=elem_id,
63
+ run_on_click=run_on_click,
64
+ preprocess=preprocess,
65
+ postprocess=postprocess,
66
+ batch=batch,
67
+ _initiated_directly=False,
68
+ )
69
+ utils.synchronize_async(examples_obj.create)
70
+ return examples_obj
71
+
72
+
73
+ class Examples:
74
+ """
75
+ This class is a wrapper over the Dataset component and can be used to create Examples
76
+ for Blocks / Interfaces. Populates the Dataset component with examples and
77
+ assigns event listener so that clicking on an example populates the input/output
78
+ components. Optionally handles example caching for fast inference.
79
+
80
+ Demos: blocks_inputs, fake_gan
81
+ Guides: more_on_examples_and_flagging, using_hugging_face_integrations, image_classification_in_pytorch, image_classification_in_tensorflow, image_classification_with_vision_transformers, create_your_own_friends_with_a_gan
82
+ """
83
+
84
+ def __init__(
85
+ self,
86
+ examples: List[Any] | List[List[Any]] | str,
87
+ inputs: IOComponent | List[IOComponent],
88
+ outputs: IOComponent | List[IOComponent] | None = None,
89
+ fn: Callable | None = None,
90
+ cache_examples: bool = False,
91
+ examples_per_page: int = 10,
92
+ _api_mode: bool = False,
93
+ label: str | None = "Examples",
94
+ elem_id: str | None = None,
95
+ run_on_click: bool = False,
96
+ preprocess: bool = True,
97
+ postprocess: bool = True,
98
+ batch: bool = False,
99
+ _initiated_directly: bool = True,
100
+ ):
101
+ """
102
+ Parameters:
103
+ examples: example inputs that can be clicked to populate specific components. Should be nested list, in which the outer list consists of samples and each inner list consists of an input corresponding to each input component. A string path to a directory of examples can also be provided but it should be within the directory with the python file running the gradio app. If there are multiple input components and a directory is provided, a log.csv file must be present in the directory to link corresponding inputs.
104
+ inputs: the component or list of components corresponding to the examples
105
+ outputs: optionally, provide the component or list of components corresponding to the output of the examples. Required if `cache` is True.
106
+ fn: optionally, provide the function to run to generate the outputs corresponding to the examples. Required if `cache` is True.
107
+ cache_examples: if True, caches examples for fast runtime. If True, then `fn` and `outputs` need to be provided
108
+ examples_per_page: how many examples to show per page.
109
+ label: the label to use for the examples component (by default, "Examples")
110
+ elem_id: an optional string that is assigned as the id of this component in the HTML DOM.
111
+ run_on_click: if cache_examples is False, clicking on an example does not run the function when an example is clicked. Set this to True to run the function when an example is clicked. Has no effect if cache_examples is True.
112
+ preprocess: if True, preprocesses the example input before running the prediction function and caching the output. Only applies if cache_examples is True.
113
+ postprocess: if True, postprocesses the example output after running the prediction function and before caching. Only applies if cache_examples is True.
114
+ batch: If True, then the function should process a batch of inputs, meaning that it should accept a list of input values for each parameter. Used only if cache_examples is True.
115
+ """
116
+ if _initiated_directly:
117
+ warnings.warn(
118
+ "Please use gr.Examples(...) instead of gr.examples.Examples(...) to create the Examples.",
119
+ )
120
+
121
+ if cache_examples and (fn is None or outputs is None):
122
+ raise ValueError("If caching examples, `fn` and `outputs` must be provided")
123
+
124
+ if not isinstance(inputs, list):
125
+ inputs = [inputs]
126
+ if outputs and not isinstance(outputs, list):
127
+ outputs = [outputs]
128
+
129
+ working_directory = Path().absolute()
130
+
131
+ if examples is None:
132
+ raise ValueError("The parameter `examples` cannot be None")
133
+ elif isinstance(examples, list) and (
134
+ len(examples) == 0 or isinstance(examples[0], list)
135
+ ):
136
+ pass
137
+ elif (
138
+ isinstance(examples, list) and len(inputs) == 1
139
+ ): # If there is only one input component, examples can be provided as a regular list instead of a list of lists
140
+ examples = [[e] for e in examples]
141
+ elif isinstance(examples, str):
142
+ if not Path(examples).exists():
143
+ raise FileNotFoundError(
144
+ "Could not find examples directory: " + examples
145
+ )
146
+ working_directory = examples
147
+ if not (Path(examples) / LOG_FILE).exists():
148
+ if len(inputs) == 1:
149
+ examples = [[e] for e in os.listdir(examples)]
150
+ else:
151
+ raise FileNotFoundError(
152
+ "Could not find log file (required for multiple inputs): "
153
+ + LOG_FILE
154
+ )
155
+ else:
156
+ with open(Path(examples) / LOG_FILE) as logs:
157
+ examples = list(csv.reader(logs))
158
+ examples = [
159
+ examples[i][: len(inputs)] for i in range(1, len(examples))
160
+ ] # remove header and unnecessary columns
161
+
162
+ else:
163
+ raise ValueError(
164
+ "The parameter `examples` must either be a string directory or a list"
165
+ "(if there is only 1 input component) or (more generally), a nested "
166
+ "list, where each sublist represents a set of inputs."
167
+ )
168
+
169
+ input_has_examples = [False] * len(inputs)
170
+ for example in examples:
171
+ for idx, example_for_input in enumerate(example):
172
+ if not (example_for_input is None):
173
+ try:
174
+ input_has_examples[idx] = True
175
+ except IndexError:
176
+ pass # If there are more example components than inputs, ignore. This can sometimes be intentional (e.g. loading from a log file where outputs and timestamps are also logged)
177
+
178
+ inputs_with_examples = [
179
+ inp for (inp, keep) in zip(inputs, input_has_examples) if keep
180
+ ]
181
+ non_none_examples = [
182
+ [ex for (ex, keep) in zip(example, input_has_examples) if keep]
183
+ for example in examples
184
+ ]
185
+
186
+ self.examples = examples
187
+ self.non_none_examples = non_none_examples
188
+ self.inputs = inputs
189
+ self.inputs_with_examples = inputs_with_examples
190
+ self.outputs = outputs
191
+ self.fn = fn
192
+ self.cache_examples = cache_examples
193
+ self._api_mode = _api_mode
194
+ self.preprocess = preprocess
195
+ self.postprocess = postprocess
196
+ self.batch = batch
197
+
198
+ with utils.set_directory(working_directory):
199
+ self.processed_examples = [
200
+ [
201
+ component.postprocess(sample)
202
+ for component, sample in zip(inputs, example)
203
+ ]
204
+ for example in examples
205
+ ]
206
+ self.non_none_processed_examples = [
207
+ [ex for (ex, keep) in zip(example, input_has_examples) if keep]
208
+ for example in self.processed_examples
209
+ ]
210
+ if cache_examples:
211
+ for example in self.examples:
212
+ if len([ex for ex in example if ex is not None]) != len(self.inputs):
213
+ warnings.warn(
214
+ "Examples are being cached but not all input components have "
215
+ "example values. This may result in an exception being thrown by "
216
+ "your function. If you do get an error while caching examples, make "
217
+ "sure all of your inputs have example values for all of your examples "
218
+ "or you provide default values for those particular parameters in your function."
219
+ )
220
+ break
221
+
222
+ with utils.set_directory(working_directory):
223
+ self.dataset = components.Dataset(
224
+ components=inputs_with_examples,
225
+ samples=non_none_examples,
226
+ type="index",
227
+ label=label,
228
+ samples_per_page=examples_per_page,
229
+ elem_id=elem_id,
230
+ )
231
+
232
+ self.cached_folder = Path(CACHED_FOLDER) / str(self.dataset._id)
233
+ self.cached_file = Path(self.cached_folder) / "log.csv"
234
+ self.cache_examples = cache_examples
235
+ self.run_on_click = run_on_click
236
+
237
+ async def create(self) -> None:
238
+ """Caches the examples if self.cache_examples is True and creates the Dataset
239
+ component to hold the examples"""
240
+
241
+ async def load_example(example_id):
242
+ # import pdb; pdb.set_trace()
243
+ if self.cache_examples:
244
+ processed_example = self.non_none_processed_examples[
245
+ example_id
246
+ ] + await self.load_from_cache(example_id)
247
+ else:
248
+ processed_example = self.non_none_processed_examples[example_id]
249
+ return utils.resolve_singleton(processed_example)
250
+
251
+ if Context.root_block:
252
+ if self.cache_examples and self.outputs:
253
+ targets = self.inputs_with_examples + self.outputs
254
+ else:
255
+ targets = self.inputs_with_examples
256
+ self.dataset.click(
257
+ load_example,
258
+ inputs=[self.dataset],
259
+ outputs=targets, # type: ignore
260
+ postprocess=False,
261
+ queue=False,
262
+ )
263
+ self.dataset.click(
264
+ self.fn,
265
+ inputs=[self.dataset],
266
+ outputs=targets, # type: ignore
267
+ postprocess=False,
268
+ queue=False,
269
+ )
270
+ # if self.run_on_click and not self.cache_examples:
271
+ # if self.fn is None:
272
+ # raise ValueError("Cannot run_on_click if no function is provided")
273
+ # self.dataset.click(
274
+ # self.fn,
275
+ # inputs=self.inputs, # type: ignore
276
+ # outputs=self.outputs, # type: ignore
277
+ # )
278
+
279
+ if self.cache_examples:
280
+ await self.cache()
281
+
282
+ async def cache(self) -> None:
283
+ """
284
+ Caches all of the examples so that their predictions can be shown immediately.
285
+ """
286
+ if Path(self.cached_file).exists():
287
+ print(
288
+ f"Using cache from '{utils.abspath(self.cached_folder)}' directory. If method or examples have changed since last caching, delete this folder to clear cache."
289
+ )
290
+ else:
291
+ if Context.root_block is None:
292
+ raise ValueError("Cannot cache examples if not in a Blocks context")
293
+
294
+ print(f"Caching examples at: '{utils.abspath(self.cached_folder)}'")
295
+ cache_logger = CSVLogger()
296
+
297
+ # create a fake dependency to process the examples and get the predictions
298
+ dependency = Context.root_block.set_event_trigger(
299
+ event_name="fake_event",
300
+ fn=self.fn,
301
+ inputs=self.inputs_with_examples, # type: ignore
302
+ outputs=self.outputs, # type: ignore
303
+ preprocess=self.preprocess and not self._api_mode,
304
+ postprocess=self.postprocess and not self._api_mode,
305
+ batch=self.batch,
306
+ )
307
+
308
+ fn_index = Context.root_block.dependencies.index(dependency)
309
+ assert self.outputs is not None
310
+ cache_logger.setup(self.outputs, self.cached_folder)
311
+ for example_id, _ in enumerate(self.examples):
312
+ processed_input = self.processed_examples[example_id]
313
+ if self.batch:
314
+ processed_input = [[value] for value in processed_input]
315
+ prediction = await Context.root_block.process_api(
316
+ fn_index=fn_index, inputs=processed_input, request=None, state={}
317
+ )
318
+ output = prediction["data"]
319
+ if self.batch:
320
+ output = [value[0] for value in output]
321
+ cache_logger.flag(output)
322
+ # Remove the "fake_event" to prevent bugs in loading interfaces from spaces
323
+ Context.root_block.dependencies.remove(dependency)
324
+ Context.root_block.fns.pop(fn_index)
325
+
326
+ async def load_from_cache(self, example_id: int) -> List[Any]:
327
+ """Loads a particular cached example for the interface.
328
+ Parameters:
329
+ example_id: The id of the example to process (zero-indexed).
330
+ """
331
+ # import pdb; pdb.set_trace()
332
+ with open(self.cached_file, encoding="utf-8") as cache:
333
+ examples = list(csv.reader(cache))
334
+ example = examples[example_id + 1] # +1 to adjust for header
335
+ output = []
336
+ assert self.outputs is not None
337
+ for component, value in zip(self.outputs, example):
338
+ try:
339
+ value_as_dict = ast.literal_eval(value)
340
+ assert utils.is_update(value_as_dict)
341
+ output.append(value_as_dict)
342
+ except (ValueError, TypeError, SyntaxError, AssertionError):
343
+ output.append(component.serialize(value, self.cached_folder))
344
+ return output
345
+
346
+
347
+ class TrackedIterable:
348
+ def __init__(
349
+ self,
350
+ iterable: Iterable | None,
351
+ index: int | None,
352
+ length: int | None,
353
+ desc: str | None,
354
+ unit: str | None,
355
+ _tqdm=None,
356
+ progress: float | None = None,
357
+ ) -> None:
358
+ self.iterable = iterable
359
+ self.index = index
360
+ self.length = length
361
+ self.desc = desc
362
+ self.unit = unit
363
+ self._tqdm = _tqdm
364
+ self.progress = progress
365
+
366
+
367
+ @document("__call__", "tqdm")
368
+ class Progress(Iterable):
369
+ """
370
+ The Progress class provides a custom progress tracker that is used in a function signature.
371
+ To attach a Progress tracker to a function, simply add a parameter right after the input parameters that has a default value set to a `gradio.Progress()` instance.
372
+ The Progress tracker can then be updated in the function by calling the Progress object or using the `tqdm` method on an Iterable.
373
+ The Progress tracker is currently only available with `queue()`.
374
+ Example:
375
+ import gradio as gr
376
+ import time
377
+ def my_function(x, progress=gr.Progress()):
378
+ progress(0, desc="Starting...")
379
+ time.sleep(1)
380
+ for i in progress.tqdm(range(100)):
381
+ time.sleep(0.1)
382
+ return x
383
+ gr.Interface(my_function, gr.Textbox(), gr.Textbox()).queue().launch()
384
+ Demos: progress
385
+ """
386
+
387
+ def __init__(
388
+ self,
389
+ track_tqdm: bool = False,
390
+ _callback: Callable | None = None, # for internal use only
391
+ _event_id: str | None = None,
392
+ ):
393
+ """
394
+ Parameters:
395
+ track_tqdm: If True, the Progress object will track any tqdm.tqdm iterations with the tqdm library in the function.
396
+ """
397
+ self.track_tqdm = track_tqdm
398
+ self._callback = _callback
399
+ self._event_id = _event_id
400
+ self.iterables: List[TrackedIterable] = []
401
+
402
+ def __len__(self):
403
+ return self.iterables[-1].length
404
+
405
+ def __iter__(self):
406
+ return self
407
+
408
+ def __next__(self):
409
+ """
410
+ Updates progress tracker with next item in iterable.
411
+ """
412
+ if self._callback:
413
+ current_iterable = self.iterables[-1]
414
+ while (
415
+ not hasattr(current_iterable.iterable, "__next__")
416
+ and len(self.iterables) > 0
417
+ ):
418
+ current_iterable = self.iterables.pop()
419
+ self._callback(
420
+ event_id=self._event_id,
421
+ iterables=self.iterables,
422
+ )
423
+ assert current_iterable.index is not None, "Index not set."
424
+ current_iterable.index += 1
425
+ try:
426
+ return next(current_iterable.iterable) # type: ignore
427
+ except StopIteration:
428
+ self.iterables.pop()
429
+ raise StopIteration
430
+ else:
431
+ return self
432
+
433
+ def __call__(
434
+ self,
435
+ progress: float | Tuple[int, int | None] | None,
436
+ desc: str | None = None,
437
+ total: int | None = None,
438
+ unit: str = "steps",
439
+ _tqdm=None,
440
+ ):
441
+ """
442
+ Updates progress tracker with progress and message text.
443
+ Parameters:
444
+ progress: If float, should be between 0 and 1 representing completion. If Tuple, first number represents steps completed, and second value represents total steps or None if unknown. If None, hides progress bar.
445
+ desc: description to display.
446
+ total: estimated total number of steps.
447
+ unit: unit of iterations.
448
+ """
449
+ if self._callback:
450
+ if isinstance(progress, tuple):
451
+ index, total = progress
452
+ progress = None
453
+ else:
454
+ index = None
455
+ self._callback(
456
+ event_id=self._event_id,
457
+ iterables=self.iterables
458
+ + [TrackedIterable(None, index, total, desc, unit, _tqdm, progress)],
459
+ )
460
+ else:
461
+ return progress
462
+
463
+ def tqdm(
464
+ self,
465
+ iterable: Iterable | None,
466
+ desc: str | None = None,
467
+ total: int | None = None,
468
+ unit: str = "steps",
469
+ _tqdm=None,
470
+ *args,
471
+ **kwargs,
472
+ ):
473
+ """
474
+ Attaches progress tracker to iterable, like tqdm.
475
+ Parameters:
476
+ iterable: iterable to attach progress tracker to.
477
+ desc: description to display.
478
+ total: estimated total number of steps.
479
+ unit: unit of iterations.
480
+ """
481
+ if self._callback:
482
+ if iterable is None:
483
+ new_iterable = TrackedIterable(None, 0, total, desc, unit, _tqdm)
484
+ self.iterables.append(new_iterable)
485
+ self._callback(event_id=self._event_id, iterables=self.iterables)
486
+ return self
487
+ length = len(iterable) if hasattr(iterable, "__len__") else None # type: ignore
488
+ self.iterables.append(
489
+ TrackedIterable(iter(iterable), 0, length, desc, unit, _tqdm)
490
+ )
491
+ return self
492
+
493
+ def update(self, n=1):
494
+ """
495
+ Increases latest iterable with specified number of steps.
496
+ Parameters:
497
+ n: number of steps completed.
498
+ """
499
+ if self._callback and len(self.iterables) > 0:
500
+ current_iterable = self.iterables[-1]
501
+ assert current_iterable.index is not None, "Index not set."
502
+ current_iterable.index += n
503
+ self._callback(
504
+ event_id=self._event_id,
505
+ iterables=self.iterables,
506
+ )
507
+ else:
508
+ return
509
+
510
+ def close(self, _tqdm):
511
+ """
512
+ Removes iterable with given _tqdm.
513
+ """
514
+ if self._callback:
515
+ for i in range(len(self.iterables)):
516
+ if id(self.iterables[i]._tqdm) == id(_tqdm):
517
+ self.iterables.pop(i)
518
+ break
519
+ self._callback(
520
+ event_id=self._event_id,
521
+ iterables=self.iterables,
522
+ )
523
+ else:
524
+ return
525
+
526
+
527
+ def create_tracker(root_blocks, event_id, fn, track_tqdm):
528
+
529
+ progress = Progress(_callback=root_blocks._queue.set_progress, _event_id=event_id)
530
+ if not track_tqdm:
531
+ return progress, fn
532
+
533
+ try:
534
+ _tqdm = __import__("tqdm")
535
+ except ModuleNotFoundError:
536
+ return progress, fn
537
+ if not hasattr(root_blocks, "_progress_tracker_per_thread"):
538
+ root_blocks._progress_tracker_per_thread = {}
539
+
540
+ def init_tqdm(self, iterable=None, desc=None, *args, **kwargs):
541
+ self._progress = root_blocks._progress_tracker_per_thread.get(
542
+ threading.get_ident()
543
+ )
544
+ if self._progress is not None:
545
+ self._progress.event_id = event_id
546
+ self._progress.tqdm(iterable, desc, _tqdm=self, *args, **kwargs)
547
+ kwargs["file"] = open(os.devnull, "w")
548
+ self.__init__orig__(iterable, desc, *args, **kwargs)
549
+
550
+ def iter_tqdm(self):
551
+ if self._progress is not None:
552
+ return self._progress
553
+ else:
554
+ return self.__iter__orig__()
555
+
556
+ def update_tqdm(self, n=1):
557
+ if self._progress is not None:
558
+ self._progress.update(n)
559
+ return self.__update__orig__(n)
560
+
561
+ def close_tqdm(self):
562
+ if self._progress is not None:
563
+ self._progress.close(self)
564
+ return self.__close__orig__()
565
+
566
+ def exit_tqdm(self, exc_type, exc_value, traceback):
567
+ if self._progress is not None:
568
+ self._progress.close(self)
569
+ return self.__exit__orig__(exc_type, exc_value, traceback)
570
+
571
+ if not hasattr(_tqdm.tqdm, "__init__orig__"):
572
+ _tqdm.tqdm.__init__orig__ = _tqdm.tqdm.__init__
573
+ _tqdm.tqdm.__init__ = init_tqdm
574
+ if not hasattr(_tqdm.tqdm, "__update__orig__"):
575
+ _tqdm.tqdm.__update__orig__ = _tqdm.tqdm.update
576
+ _tqdm.tqdm.update = update_tqdm
577
+ if not hasattr(_tqdm.tqdm, "__close__orig__"):
578
+ _tqdm.tqdm.__close__orig__ = _tqdm.tqdm.close
579
+ _tqdm.tqdm.close = close_tqdm
580
+ if not hasattr(_tqdm.tqdm, "__exit__orig__"):
581
+ _tqdm.tqdm.__exit__orig__ = _tqdm.tqdm.__exit__
582
+ _tqdm.tqdm.__exit__ = exit_tqdm
583
+ if not hasattr(_tqdm.tqdm, "__iter__orig__"):
584
+ _tqdm.tqdm.__iter__orig__ = _tqdm.tqdm.__iter__
585
+ _tqdm.tqdm.__iter__ = iter_tqdm
586
+ if hasattr(_tqdm, "auto") and hasattr(_tqdm.auto, "tqdm"):
587
+ _tqdm.auto.tqdm = _tqdm.tqdm
588
+
589
+ def tracked_fn(*args):
590
+ thread_id = threading.get_ident()
591
+ root_blocks._progress_tracker_per_thread[thread_id] = progress
592
+ response = fn(*args)
593
+ del root_blocks._progress_tracker_per_thread[thread_id]
594
+ return response
595
+
596
+ return progress, tracked_fn
597
+
598
+
599
+ def special_args(
600
+ fn: Callable,
601
+ inputs: List[Any] | None = None,
602
+ request: routes.Request | None = None,
603
+ ):
604
+ """
605
+ Checks if function has special arguments Request (via annotation) or Progress (via default value).
606
+ If inputs is provided, these values will be loaded into the inputs array.
607
+ Parameters:
608
+ block_fn: function to check.
609
+ inputs: array to load special arguments into.
610
+ request: request to load into inputs.
611
+ Returns:
612
+ updated inputs, request index, progress index
613
+ """
614
+ signature = inspect.signature(fn)
615
+ positional_args = []
616
+ for i, param in enumerate(signature.parameters.values()):
617
+ if param.kind not in (param.POSITIONAL_ONLY, param.POSITIONAL_OR_KEYWORD):
618
+ break
619
+ positional_args.append(param)
620
+ progress_index = None
621
+ for i, param in enumerate(positional_args):
622
+ if isinstance(param.default, Progress):
623
+ progress_index = i
624
+ if inputs is not None:
625
+ inputs.insert(i, param.default)
626
+ elif param.annotation == routes.Request:
627
+ if inputs is not None:
628
+ inputs.insert(i, request)
629
+ if inputs is not None:
630
+ while len(inputs) < len(positional_args):
631
+ i = len(inputs)
632
+ param = positional_args[i]
633
+ if param.default == param.empty:
634
+ warnings.warn("Unexpected argument. Filling with None.")
635
+ inputs.append(None)
636
+ else:
637
+ inputs.append(param.default)
638
+ return inputs or [], progress_index
639
+
640
+
641
+ @document()
642
+ def update(**kwargs) -> dict:
643
+ """
644
+ Updates component properties. When a function passed into a Gradio Interface or a Blocks events returns a typical value, it updates the value of the output component. But it is also possible to update the properties of an output component (such as the number of lines of a `Textbox` or the visibility of an `Image`) by returning the component's `update()` function, which takes as parameters any of the constructor parameters for that component.
645
+ This is a shorthand for using the update method on a component.
646
+ For example, rather than using gr.Number.update(...) you can just use gr.update(...).
647
+ Note that your editor's autocompletion will suggest proper parameters
648
+ if you use the update method on the component.
649
+ Demos: blocks_essay, blocks_update, blocks_essay_update
650
+
651
+ Parameters:
652
+ kwargs: Key-word arguments used to update the component's properties.
653
+ Example:
654
+ # Blocks Example
655
+ import gradio as gr
656
+ with gr.Blocks() as demo:
657
+ radio = gr.Radio([1, 2, 4], label="Set the value of the number")
658
+ number = gr.Number(value=2, interactive=True)
659
+ radio.change(fn=lambda value: gr.update(value=value), inputs=radio, outputs=number)
660
+ demo.launch()
661
+
662
+ # Interface example
663
+ import gradio as gr
664
+ def change_textbox(choice):
665
+ if choice == "short":
666
+ return gr.Textbox.update(lines=2, visible=True)
667
+ elif choice == "long":
668
+ return gr.Textbox.update(lines=8, visible=True)
669
+ else:
670
+ return gr.Textbox.update(visible=False)
671
+ gr.Interface(
672
+ change_textbox,
673
+ gr.Radio(
674
+ ["short", "long", "none"], label="What kind of essay would you like to write?"
675
+ ),
676
+ gr.Textbox(lines=2),
677
+ live=True,
678
+ ).launch()
679
+ """
680
+ kwargs["__type__"] = "generic_update"
681
+ return kwargs
682
+
683
+
684
+ def skip() -> dict:
685
+ return update()
686
+
687
+
688
+ @document()
689
+ def make_waveform(
690
+ audio: str | Tuple[int, np.ndarray],
691
+ *,
692
+ bg_color: str = "#f3f4f6",
693
+ bg_image: str | None = None,
694
+ fg_alpha: float = 0.75,
695
+ bars_color: str | Tuple[str, str] = ("#fbbf24", "#ea580c"),
696
+ bar_count: int = 50,
697
+ bar_width: float = 0.6,
698
+ ):
699
+ """
700
+ Generates a waveform video from an audio file. Useful for creating an easy to share audio visualization. The output should be passed into a `gr.Video` component.
701
+ Parameters:
702
+ audio: Audio file path or tuple of (sample_rate, audio_data)
703
+ bg_color: Background color of waveform (ignored if bg_image is provided)
704
+ bg_image: Background image of waveform
705
+ fg_alpha: Opacity of foreground waveform
706
+ bars_color: Color of waveform bars. Can be a single color or a tuple of (start_color, end_color) of gradient
707
+ bar_count: Number of bars in waveform
708
+ bar_width: Width of bars in waveform. 1 represents full width, 0.5 represents half width, etc.
709
+ Returns:
710
+ A filepath to the output video.
711
+ """
712
+ if isinstance(audio, str):
713
+ audio_file = audio
714
+ audio = processing_utils.audio_from_file(audio)
715
+ else:
716
+ tmp_wav = tempfile.NamedTemporaryFile(suffix=".wav", delete=False)
717
+ processing_utils.audio_to_file(audio[0], audio[1], tmp_wav.name)
718
+ audio_file = tmp_wav.name
719
+ duration = round(len(audio[1]) / audio[0], 4)
720
+
721
+ # Helper methods to create waveform
722
+ def hex_to_RGB(hex_str):
723
+ return [int(hex_str[i : i + 2], 16) for i in range(1, 6, 2)]
724
+
725
+ def get_color_gradient(c1, c2, n):
726
+ assert n > 1
727
+ c1_rgb = np.array(hex_to_RGB(c1)) / 255
728
+ c2_rgb = np.array(hex_to_RGB(c2)) / 255
729
+ mix_pcts = [x / (n - 1) for x in range(n)]
730
+ rgb_colors = [((1 - mix) * c1_rgb + (mix * c2_rgb)) for mix in mix_pcts]
731
+ return [
732
+ "#" + "".join([format(int(round(val * 255)), "02x") for val in item])
733
+ for item in rgb_colors
734
+ ]
735
+
736
+ # Reshape audio to have a fixed number of bars
737
+ samples = audio[1]
738
+ if len(samples.shape) > 1:
739
+ samples = np.mean(samples, 1)
740
+ bins_to_pad = bar_count - (len(samples) % bar_count)
741
+ samples = np.pad(samples, [(0, bins_to_pad)])
742
+ samples = np.reshape(samples, (bar_count, -1))
743
+ samples = np.abs(samples)
744
+ samples = np.max(samples, 1)
745
+
746
+ matplotlib.use("Agg")
747
+ plt.clf()
748
+ # Plot waveform
749
+ color = (
750
+ bars_color
751
+ if isinstance(bars_color, str)
752
+ else get_color_gradient(bars_color[0], bars_color[1], bar_count)
753
+ )
754
+ plt.bar(
755
+ np.arange(0, bar_count),
756
+ samples * 2,
757
+ bottom=(-1 * samples),
758
+ width=bar_width,
759
+ color=color,
760
+ )
761
+ plt.axis("off")
762
+ plt.margins(x=0)
763
+ tmp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
764
+ savefig_kwargs: Dict[str, Any] = {"bbox_inches": "tight"}
765
+ if bg_image is not None:
766
+ savefig_kwargs["transparent"] = True
767
+ else:
768
+ savefig_kwargs["facecolor"] = bg_color
769
+ plt.savefig(tmp_img.name, **savefig_kwargs)
770
+ waveform_img = PIL.Image.open(tmp_img.name)
771
+ waveform_img = waveform_img.resize((1000, 200))
772
+
773
+ # Composite waveform with background image
774
+ if bg_image is not None:
775
+ waveform_array = np.array(waveform_img)
776
+ waveform_array[:, :, 3] = waveform_array[:, :, 3] * fg_alpha
777
+ waveform_img = PIL.Image.fromarray(waveform_array)
778
+
779
+ bg_img = PIL.Image.open(bg_image)
780
+ waveform_width, waveform_height = waveform_img.size
781
+ bg_width, bg_height = bg_img.size
782
+ if waveform_width != bg_width:
783
+ bg_img = bg_img.resize(
784
+ (waveform_width, 2 * int(bg_height * waveform_width / bg_width / 2))
785
+ )
786
+ bg_width, bg_height = bg_img.size
787
+ composite_height = max(bg_height, waveform_height)
788
+ composite = PIL.Image.new("RGBA", (waveform_width, composite_height), "#FFFFFF")
789
+ composite.paste(bg_img, (0, composite_height - bg_height))
790
+ composite.paste(
791
+ waveform_img, (0, composite_height - waveform_height), waveform_img
792
+ )
793
+ composite.save(tmp_img.name)
794
+ img_width, img_height = composite.size
795
+ else:
796
+ img_width, img_height = waveform_img.size
797
+ waveform_img.save(tmp_img.name)
798
+
799
+ # Convert waveform to video with ffmpeg
800
+ output_mp4 = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
801
+
802
+ ffmpeg_cmd = f"""ffmpeg -loop 1 -i {tmp_img.name} -i {audio_file} -vf "color=c=#FFFFFF77:s={img_width}x{img_height}[bar];[0][bar]overlay=-w+(w/{duration})*t:H-h:shortest=1" -t {duration} -y {output_mp4.name}"""
803
+
804
+ subprocess.call(ffmpeg_cmd, shell=True)
805
+ return output_mp4.name
gligen/.DS_Store ADDED
Binary file (6.15 kB). View file
 
gligen/SD_input_conv_weight_bias.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0808ec837d58857a93dc27e90855ca8ec749afa4fb8d72b89f36e0d3e86c0930
3
+ size 48559
gligen/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os, sys
3
+ sys.path.append(os.path.dirname(__file__))
4
+ sys.path.append(os.path.join(os.path.dirname(__file__), "ldm"))
5
+
6
+ import gligen.evaluator as evaluator
7
+ import gligen.trainer as trainer
8
+
9
+
10
+ # import gligen.ldm as ldm
gligen/create_meta.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CKPTS = [
2
+
3
+ dict(
4
+ path="/home/chunyl/azure_mount/yuhengdb/fine_tune_ldm/version5_branch6_output/GoldG+SBU+CC3M+CC12M+O365/second_stage_drop_both/tag01/checkpoint_00450001.pth",
5
+ feature_type=['before','after_reproject'],
6
+ save_folder_name="v5b6_drop_both",
7
+ ),
8
+
9
+
10
+ # dict(
11
+ # path="/home/v-yuhengli/blobfuse/output/fine_tune_ldm/version5_branch6_output/GoldG+SBU+CC3M+CC12M+O365/second_stage_drop_none/tag00/checkpoint_00165001.pth",
12
+ # feature_type=['before','after_reproject'],
13
+ # save_folder_name="v5b6_drop_none",
14
+ # ),
15
+
16
+
17
+
18
+
19
+
20
+ ]
21
+
22
+
23
+
24
+ # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
25
+
26
+
27
+
28
+
29
+
30
+
31
+
32
+
33
+ # if meta["has_image_mask"] == 0:
34
+ # image_embeddings = text_embeddings
35
+ # if meta["has_text_mask"] == 0:
36
+ # text_embeddings = image_embeddings
37
+
38
+ # out = {
39
+ # "boxes" : boxes.unsqueeze(0).repeat(batch,1,1),
40
+ # "masks" : masks.unsqueeze(0).repeat(batch,1),
41
+ # "text_masks" : masks.unsqueeze(0).repeat(batch,1),
42
+ # "image_masks" : masks.unsqueeze(0).repeat(batch,1),
43
+ # "text_embeddings" : text_embeddings.unsqueeze(0).repeat(batch,1,1),
44
+ # "image_embeddings" : image_embeddings.unsqueeze(0).repeat(batch,1,1)
45
+ # }
46
+
47
+
48
+
49
+
50
+
51
+
52
+
53
+ META = [
54
+
55
+
56
+ dict(
57
+ prompt = "a teddy bear sitting next to a red bird",
58
+ phrases = ['a teddy bear', 'a red bird'],
59
+ images = ['images/teddy.jpg', 'images/red_bird.jpg'],
60
+ locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
61
+ alpha_type = [1.0, 0, 0.0],
62
+ has_text_mask = 1,
63
+ has_image_mask = 0,
64
+ save_folder_name="teddy_bird_1_1"
65
+ ),
66
+
67
+
68
+ # dict(
69
+ # prompt = "a teddy bear sitting next to a bird",
70
+ # phrases = ['a teddy bear', 'a bird'],
71
+ # images = ['images/teddy.jpg', 'images/red_bird.jpg'],
72
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
73
+ # alpha_type = [1.0, 0, 0.0],
74
+ # has_text_mask = 1,
75
+ # has_image_mask = 1,
76
+ # save_folder_name="teddy_bird_1_1"
77
+ # ),
78
+
79
+
80
+ # dict(
81
+ # prompt = "a teddy bear sitting next to a bird",
82
+ # phrases = ['a teddy bear', 'a bird'],
83
+ # images = ['images/teddy.jpg', 'images/red_bird.jpg'],
84
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
85
+ # alpha_type = [0.5, 0, 0.5],
86
+ # has_text_mask = 1,
87
+ # has_image_mask = 0,
88
+ # save_folder_name="teddy_bird_1_0"
89
+ # ),
90
+
91
+ # dict(
92
+ # prompt = "",
93
+ # phrases = ['a teddy bear', 'an umbrella'],
94
+ # images = ['images/teddy.jpg', 'images/umbrella.png'],
95
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
96
+ # alpha_type = [1.0, 0, 0.0],
97
+ # has_text_mask = 1,
98
+ # has_image_mask = 1,
99
+ # save_folder_name="empty_teddy_umbrella_1_1"
100
+ # ),
101
+
102
+ # dict(
103
+ # prompt = "hello kitty and bird hybrid",
104
+ # phrases = ['a hello kitty', 'a hello kitty'],
105
+ # images = ['images/red_bird.jpg', 'images/red_bird.jpg'],
106
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
107
+ # has_text_mask = 1,
108
+ # has_image_mask = 1,
109
+ # save_folder_name="hello+bird_1_1"
110
+ # ),
111
+
112
+ # dict(
113
+ # prompt = "hello kitty and teddy bear hybrid",
114
+ # phrases = ['a hello kitty', 'a hello kitty'],
115
+ # images = ['images/teddy.jpg', 'images/teddy.jpg'],
116
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
117
+ # has_text_mask = 1,
118
+ # has_image_mask = 1,
119
+ # save_folder_name="hello+teddy_1_1"
120
+ # ),
121
+
122
+ # dict(
123
+ # prompt = "bird and hello kitty hybrid",
124
+ # phrases = ['a bird', 'a bird'],
125
+ # images = ['images/hello.jpg', 'images/hello.jpg'],
126
+ # locations = [ [0.0,0.09,0.33,0.76], [0.55,0.11,1.0,0.8] ],
127
+ # alpha_type = [1.0, 0, 0.0],
128
+ # has_text_mask = 1,
129
+ # has_image_mask = 0.5,
130
+ # save_folder_name="bird+hello_1_1"
131
+ # ),
132
+
133
+
134
+
135
+ # dict(
136
+ # prompt = "a deer standing in front of a brick house in the woods, anime, oil painting, high resolution, cottagecore, ghibli inspired, 4k",
137
+ # phrases = ['a deer'],
138
+ # images = ['images/sky.jpg'],
139
+ # locations = [ [0.0,0.5,0.5,0.9] ],
140
+ # alpha_type = [1, 0, 0],
141
+ # has_text_mask = 1,
142
+ # has_image_mask = 1,
143
+ # save_folder_name="deer_sky"
144
+ # ),
145
+
146
+
147
+ # dict(
148
+ # prompt = "A woman sitting in a restaurant with a slice of pizza in front of her",
149
+ # phrases = ['dining table', 'pizza', 'person', 'wall', 'car', 'paper', 'chair', 'window', 'bottle', 'cup'],
150
+ # images = ['images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg','images/hello.jpg'],
151
+ # locations = [ [0.0030, 0.3589, 1.0000, 1.0000],
152
+ # [0.0779, 0.6744, 0.9768, 1.0000],
153
+ # [0.2236, 0.0000, 0.7809, 0.4352],
154
+ # [0.0000, 0.0000, 0.4313, 0.4505],
155
+ # [0.6275, 0.1050, 0.9444, 0.2497],
156
+ # [0.0000, 0.3859, 0.1250, 0.6922],
157
+ # [0.7137, 0.2389, 0.8540, 0.4549],
158
+ # [0.0000, 0.0000, 0.4667, 0.0630],
159
+ # [0.3822, 0.4235, 0.4932, 0.6575],
160
+ # [0.6616, 0.3617, 0.7880, 0.5165] ],
161
+ # alpha_type = [0.0, 0, 1.0],
162
+ # has_text_mask = 1,
163
+ # has_image_mask = 0,
164
+ # save_folder_name="pizza_1_0"
165
+ # ),
166
+
167
+
168
+
169
+
170
+ ]
gligen/distributed.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import pickle
3
+
4
+ import torch
5
+ from torch import distributed as dist
6
+ from torch.utils.data.sampler import Sampler
7
+
8
+
9
+ def get_rank():
10
+ if not dist.is_available():
11
+ return 0
12
+
13
+ if not dist.is_initialized():
14
+ return 0
15
+
16
+ return dist.get_rank()
17
+
18
+
19
+ def synchronize():
20
+ if not dist.is_available():
21
+ return
22
+ if not dist.is_initialized():
23
+ return
24
+
25
+ world_size = dist.get_world_size()
26
+ if world_size == 1:
27
+ return
28
+
29
+ dist.barrier()
30
+
31
+
32
+ def get_world_size():
33
+ if not dist.is_available():
34
+ return 1
35
+ if not dist.is_initialized():
36
+ return 1
37
+ return dist.get_world_size()
38
+
39
+
40
+ def reduce_sum(tensor):
41
+ if not dist.is_available():
42
+ return tensor
43
+
44
+ if not dist.is_initialized():
45
+ return tensor
46
+
47
+ tensor = tensor.clone()
48
+ dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
49
+
50
+ return tensor
51
+
52
+
53
+ def gather_grad(params):
54
+ world_size = get_world_size()
55
+
56
+ if world_size == 1:
57
+ return
58
+
59
+ for param in params:
60
+ if param.grad is not None:
61
+ dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
62
+ param.grad.data.div_(world_size)
63
+
64
+
65
+ def all_gather(data):
66
+ world_size = get_world_size()
67
+
68
+ if world_size == 1:
69
+ return [data]
70
+
71
+ buffer = pickle.dumps(data)
72
+ storage = torch.ByteStorage.from_buffer(buffer)
73
+ tensor = torch.ByteTensor(storage).to('cuda')
74
+
75
+ local_size = torch.IntTensor([tensor.numel()]).to('cuda')
76
+ size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)]
77
+ dist.all_gather(size_list, local_size)
78
+ size_list = [int(size.item()) for size in size_list]
79
+ max_size = max(size_list)
80
+
81
+ tensor_list = []
82
+ for _ in size_list:
83
+ tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda'))
84
+
85
+ if local_size != max_size:
86
+ padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda')
87
+ tensor = torch.cat((tensor, padding), 0)
88
+
89
+ dist.all_gather(tensor_list, tensor)
90
+
91
+ data_list = []
92
+
93
+ for size, tensor in zip(size_list, tensor_list):
94
+ buffer = tensor.cpu().numpy().tobytes()[:size]
95
+ data_list.append(pickle.loads(buffer))
96
+
97
+ return data_list
98
+
99
+
100
+ def reduce_loss_dict(loss_dict):
101
+ world_size = get_world_size()
102
+
103
+ if world_size < 2:
104
+ return loss_dict
105
+
106
+ with torch.no_grad():
107
+ keys = []
108
+ losses = []
109
+
110
+ for k in sorted(loss_dict.keys()):
111
+ keys.append(k)
112
+ losses.append(loss_dict[k])
113
+
114
+ losses = torch.stack(losses, 0)
115
+ dist.reduce(losses, dst=0)
116
+
117
+ if dist.get_rank() == 0:
118
+ losses /= world_size
119
+
120
+ reduced_losses = {k: v for k, v in zip(keys, losses)}
121
+
122
+ return reduced_losses
gligen/evaluator.py ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from ldm.models.diffusion.ddim import DDIMSampler
3
+ from ldm.models.diffusion.plms import PLMSSampler
4
+ from ldm.util import instantiate_from_config
5
+ import numpy as np
6
+ import random
7
+ from dataset.concat_dataset import ConCatDataset #, collate_fn
8
+ from torch.utils.data import DataLoader
9
+ from torch.utils.data.distributed import DistributedSampler
10
+ import os
11
+ from tqdm import tqdm
12
+ from distributed import get_rank, synchronize, get_world_size
13
+ from trainer import read_official_ckpt, batch_to_device, ImageCaptionSaver, wrap_loader #, get_padded_boxes
14
+ from PIL import Image
15
+ import math
16
+ import json
17
+
18
+
19
+ def draw_masks_from_boxes(boxes,size):
20
+
21
+ image_masks = []
22
+ for box in boxes:
23
+ image_mask = torch.ones(size[0],size[1])
24
+ for bx in box:
25
+ x0, x1 = bx[0]*size[0], bx[2]*size[0]
26
+ y0, y1 = bx[1]*size[1], bx[3]*size[1]
27
+ image_mask[int(y0):int(y1), int(x0):int(x1)] = 0
28
+ image_masks.append(image_mask)
29
+ return torch.stack(image_masks).unsqueeze(1)
30
+
31
+
32
+
33
+ def set_alpha_scale(model, alpha_scale):
34
+ from ldm.modules.attention import GatedCrossAttentionDense, GatedSelfAttentionDense
35
+ for module in model.modules():
36
+ if type(module) == GatedCrossAttentionDense or type(module) == GatedSelfAttentionDense:
37
+ module.scale = alpha_scale
38
+ # print("scale: ", alpha_scale)
39
+ # print("attn: ", module.alpha_attn)
40
+ # print("dense: ", module.alpha_dense)
41
+ # print(' ')
42
+ # print(' ')
43
+
44
+
45
+ def save_images(samples, image_ids, folder, to256):
46
+ for sample, image_id in zip(samples, image_ids):
47
+ sample = torch.clamp(sample, min=-1, max=1) * 0.5 + 0.5
48
+ sample = sample.cpu().numpy().transpose(1,2,0) * 255
49
+ img_name = str(int(image_id))+'.png'
50
+ img = Image.fromarray(sample.astype(np.uint8))
51
+ if to256:
52
+ img = img.resize( (256,256), Image.BICUBIC)
53
+ img.save(os.path.join(folder,img_name))
54
+
55
+
56
+ def ckpt_to_folder_name(basename):
57
+ name=""
58
+ for s in basename:
59
+ if s.isdigit():
60
+ name+=s
61
+ seen = round( int(name)/1000, 1 )
62
+ return str(seen).ljust(4,'0')+'k'
63
+
64
+
65
+ class Evaluator:
66
+ def __init__(self, config):
67
+
68
+ self.config = config
69
+ self.device = torch.device("cuda")
70
+
71
+
72
+ # = = = = = create model and diffusion = = = = = #
73
+ if self.config.ckpt != "real":
74
+
75
+ self.model = instantiate_from_config(config.model).to(self.device)
76
+ self.autoencoder = instantiate_from_config(config.autoencoder).to(self.device)
77
+ self.text_encoder = instantiate_from_config(config.text_encoder).to(self.device)
78
+ self.diffusion = instantiate_from_config(config.diffusion).to(self.device)
79
+
80
+ # donot need to load official_ckpt for self.model here, since we will load from our ckpt
81
+ state_dict = read_official_ckpt( os.path.join(config.DATA_ROOT, config.official_ckpt_name) )
82
+ self.autoencoder.load_state_dict( state_dict["autoencoder"] )
83
+ self.text_encoder.load_state_dict( state_dict["text_encoder"] )
84
+ self.diffusion.load_state_dict( state_dict["diffusion"] )
85
+
86
+
87
+ # = = = = = load from our ckpt = = = = = #
88
+ if self.config.ckpt == "real":
89
+ print("Saving all real images...")
90
+ self.just_save_real = True
91
+ else:
92
+ checkpoint = torch.load(self.config.ckpt, map_location="cpu")
93
+ which_state = 'ema' if 'ema' in checkpoint else "model"
94
+ which_state = which_state if config.which_state is None else config.which_state
95
+ self.model.load_state_dict(checkpoint[which_state])
96
+ print("ckpt is loaded")
97
+ self.just_save_real = False
98
+ set_alpha_scale(self.model, self.config.alpha_scale)
99
+
100
+ self.autoencoder.eval()
101
+ self.model.eval()
102
+ self.text_encoder.eval()
103
+
104
+
105
+ # = = = = = create data = = = = = #
106
+ self.dataset_eval = ConCatDataset(config.val_dataset_names, config.DATA_ROOT, config.which_embedder, train=False)
107
+ print("total eval images: ", len(self.dataset_eval))
108
+ sampler = DistributedSampler(self.dataset_eval,shuffle=False) if config.distributed else None
109
+ loader_eval = DataLoader( self.dataset_eval,batch_size=config.batch_size,
110
+ num_workers=config.workers,
111
+ pin_memory=True,
112
+ sampler=sampler,
113
+ drop_last=False) # shuffle default is False
114
+ self.loader_eval = loader_eval
115
+
116
+
117
+ # = = = = = create output folder = = = = = #
118
+ folder_name = ckpt_to_folder_name(os.path.basename(config.ckpt))
119
+ self.outdir = os.path.join(config.OUTPUT_ROOT, folder_name)
120
+ self.outdir_real = os.path.join(self.outdir,'real')
121
+ self.outdir_fake = os.path.join(self.outdir,'fake')
122
+ if config.to256:
123
+ self.outdir_real256 = os.path.join(self.outdir,'real256')
124
+ self.outdir_fake256 = os.path.join(self.outdir,'fake256')
125
+ synchronize() # if rank0 is faster, it may mkdir before the other rank call os.listdir()
126
+ if get_rank() == 0:
127
+ os.makedirs(self.outdir, exist_ok=True)
128
+ os.makedirs(self.outdir_real, exist_ok=True)
129
+ os.makedirs(self.outdir_fake, exist_ok=True)
130
+ if config.to256:
131
+ os.makedirs(self.outdir_real256, exist_ok=True)
132
+ os.makedirs(self.outdir_fake256, exist_ok=True)
133
+ print(self.outdir) # double check
134
+
135
+ self.evaluation_finished = False
136
+ if os.path.exists( os.path.join(self.outdir,'score.txt') ):
137
+ self.evaluation_finished = True
138
+
139
+
140
+ def alread_saved_this_batch(self, batch):
141
+ existing_real_files = os.listdir( self.outdir_real )
142
+ existing_fake_files = os.listdir( self.outdir_fake )
143
+ status = []
144
+ for image_id in batch["id"]:
145
+ img_name = str(int(image_id))+'.png'
146
+ status.append(img_name in existing_real_files)
147
+ status.append(img_name in existing_fake_files)
148
+ return all(status)
149
+
150
+
151
+ @torch.no_grad()
152
+ def start_evaluating(self):
153
+
154
+ iterator = tqdm( self.loader_eval, desc='Evaluating progress')
155
+ for batch in iterator:
156
+
157
+ #if not self.alread_saved_this_batch(batch):
158
+ if True:
159
+
160
+ batch_to_device(batch, self.device)
161
+ batch_size = batch["image"].shape[0]
162
+ samples_real = batch["image"]
163
+
164
+ if self.just_save_real:
165
+ samples_fake = None
166
+ else:
167
+ uc = self.text_encoder.encode( batch_size*[""] )
168
+ context = self.text_encoder.encode( batch["caption"] )
169
+
170
+ image_mask = x0 = None
171
+ if self.config.inpaint:
172
+ image_mask = draw_masks_from_boxes( batch['boxes'], self.model.image_size ).cuda()
173
+ x0 = self.autoencoder.encode( batch["image"] )
174
+
175
+ shape = (batch_size, self.model.in_channels, self.model.image_size, self.model.image_size)
176
+ if self.config.no_plms:
177
+ sampler = DDIMSampler(self.diffusion, self.model)
178
+ steps = 250
179
+ else:
180
+ sampler = PLMSSampler(self.diffusion, self.model)
181
+ steps = 50
182
+
183
+ input = dict( x=None, timesteps=None, context=context, boxes=batch['boxes'], masks=batch['masks'], positive_embeddings=batch["positive_embeddings"] )
184
+ samples_fake = sampler.sample(S=steps, shape=shape, input=input, uc=uc, guidance_scale=self.config.guidance_scale, mask=image_mask, x0=x0)
185
+ samples_fake = self.autoencoder.decode(samples_fake)
186
+
187
+
188
+ save_images(samples_real, batch['id'], self.outdir_real, to256=False )
189
+ if self.config.to256:
190
+ save_images(samples_real, batch['id'], self.outdir_real256, to256=True )
191
+
192
+ if samples_fake is not None:
193
+ save_images(samples_fake, batch['id'], self.outdir_fake, to256=False )
194
+ if self.config.to256:
195
+ save_images(samples_fake, batch['id'], self.outdir_fake256, to256=True )
196
+
197
+
198
+ def fire_fid(self):
199
+ paths = [self.outdir_real, self.outdir_fake]
200
+ if self.config.to256:
201
+ paths = [self.outdir_real256, self.outdir_fake256]
202
+
203
+
204
+
205
+
206
+
207
+
208
+
209
+
210
+
211
+
212
+
213
+
214
+
215
+
216
+
217
+
218
+
219
+
220
+
221
+
222
+
223
+
224
+
225
+
gligen/ldm/.DS_Store ADDED
Binary file (6.15 kB). View file
 
gligen/ldm/data/.DS_Store ADDED
Binary file (6.15 kB). View file
 
gligen/ldm/data/__init__.py ADDED
File without changes
gligen/ldm/data/base.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
3
+
4
+
5
+ class Txt2ImgIterableBaseDataset(IterableDataset):
6
+ '''
7
+ Define an interface to make the IterableDatasets for text2img data chainable
8
+ '''
9
+ def __init__(self, num_records=0, valid_ids=None, size=256):
10
+ super().__init__()
11
+ self.num_records = num_records
12
+ self.valid_ids = valid_ids
13
+ self.sample_ids = valid_ids
14
+ self.size = size
15
+
16
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
17
+
18
+ def __len__(self):
19
+ return self.num_records
20
+
21
+ @abstractmethod
22
+ def __iter__(self):
23
+ pass
gligen/ldm/data/imagenet.py ADDED
@@ -0,0 +1,394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, yaml, pickle, shutil, tarfile, glob
2
+ import cv2
3
+ import albumentations
4
+ import PIL
5
+ import numpy as np
6
+ import torchvision.transforms.functional as TF
7
+ from omegaconf import OmegaConf
8
+ from functools import partial
9
+ from PIL import Image
10
+ from tqdm import tqdm
11
+ from torch.utils.data import Dataset, Subset
12
+
13
+ import taming.data.utils as tdu
14
+ from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
15
+ from taming.data.imagenet import ImagePaths
16
+
17
+ from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
18
+
19
+
20
+ def synset2idx(path_to_yaml="ldm/data/index_synset.yaml"):
21
+ with open(path_to_yaml) as f:
22
+ di2s = yaml.load(f)
23
+ return dict((v,k) for k,v in di2s.items())
24
+
25
+
26
+ class ImageNetBase(Dataset):
27
+ def __init__(self, config=None):
28
+ self.config = config or OmegaConf.create()
29
+ if not type(self.config)==dict:
30
+ self.config = OmegaConf.to_container(self.config)
31
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
32
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
33
+ self._prepare()
34
+ self._prepare_synset_to_human()
35
+ self._prepare_idx_to_synset()
36
+ self._prepare_human_to_integer_label()
37
+ self._load()
38
+
39
+ def __len__(self):
40
+ return len(self.data)
41
+
42
+ def __getitem__(self, i):
43
+ return self.data[i]
44
+
45
+ def _prepare(self):
46
+ raise NotImplementedError()
47
+
48
+ def _filter_relpaths(self, relpaths):
49
+ ignore = set([
50
+ "n06596364_9591.JPEG",
51
+ ])
52
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
53
+ if "sub_indices" in self.config:
54
+ indices = str_to_indices(self.config["sub_indices"])
55
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
56
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
57
+ files = []
58
+ for rpath in relpaths:
59
+ syn = rpath.split("/")[0]
60
+ if syn in synsets:
61
+ files.append(rpath)
62
+ return files
63
+ else:
64
+ return relpaths
65
+
66
+ def _prepare_synset_to_human(self):
67
+ SIZE = 2655750
68
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
69
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
70
+ if (not os.path.exists(self.human_dict) or
71
+ not os.path.getsize(self.human_dict)==SIZE):
72
+ download(URL, self.human_dict)
73
+
74
+ def _prepare_idx_to_synset(self):
75
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
76
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
77
+ if (not os.path.exists(self.idx2syn)):
78
+ download(URL, self.idx2syn)
79
+
80
+ def _prepare_human_to_integer_label(self):
81
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
82
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
83
+ if (not os.path.exists(self.human2integer)):
84
+ download(URL, self.human2integer)
85
+ with open(self.human2integer, "r") as f:
86
+ lines = f.read().splitlines()
87
+ assert len(lines) == 1000
88
+ self.human2integer_dict = dict()
89
+ for line in lines:
90
+ value, key = line.split(":")
91
+ self.human2integer_dict[key] = int(value)
92
+
93
+ def _load(self):
94
+ with open(self.txt_filelist, "r") as f:
95
+ self.relpaths = f.read().splitlines()
96
+ l1 = len(self.relpaths)
97
+ self.relpaths = self._filter_relpaths(self.relpaths)
98
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
99
+
100
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
101
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
102
+
103
+ unique_synsets = np.unique(self.synsets)
104
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
105
+ if not self.keep_orig_class_label:
106
+ self.class_labels = [class_dict[s] for s in self.synsets]
107
+ else:
108
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
109
+
110
+ with open(self.human_dict, "r") as f:
111
+ human_dict = f.read().splitlines()
112
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
113
+
114
+ self.human_labels = [human_dict[s] for s in self.synsets]
115
+
116
+ labels = {
117
+ "relpath": np.array(self.relpaths),
118
+ "synsets": np.array(self.synsets),
119
+ "class_label": np.array(self.class_labels),
120
+ "human_label": np.array(self.human_labels),
121
+ }
122
+
123
+ if self.process_images:
124
+ self.size = retrieve(self.config, "size", default=256)
125
+ self.data = ImagePaths(self.abspaths,
126
+ labels=labels,
127
+ size=self.size,
128
+ random_crop=self.random_crop,
129
+ )
130
+ else:
131
+ self.data = self.abspaths
132
+
133
+
134
+ class ImageNetTrain(ImageNetBase):
135
+ NAME = "ILSVRC2012_train"
136
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
137
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
138
+ FILES = [
139
+ "ILSVRC2012_img_train.tar",
140
+ ]
141
+ SIZES = [
142
+ 147897477120,
143
+ ]
144
+
145
+ def __init__(self, process_images=True, data_root=None, **kwargs):
146
+ self.process_images = process_images
147
+ self.data_root = data_root
148
+ super().__init__(**kwargs)
149
+
150
+ def _prepare(self):
151
+ if self.data_root:
152
+ self.root = os.path.join(self.data_root, self.NAME)
153
+ else:
154
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
155
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
156
+
157
+ self.datadir = os.path.join(self.root, "data")
158
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
159
+ self.expected_length = 1281167
160
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
161
+ default=True)
162
+ if not tdu.is_prepared(self.root):
163
+ # prep
164
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
165
+
166
+ datadir = self.datadir
167
+ if not os.path.exists(datadir):
168
+ path = os.path.join(self.root, self.FILES[0])
169
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
170
+ import academictorrents as at
171
+ atpath = at.get(self.AT_HASH, datastore=self.root)
172
+ assert atpath == path
173
+
174
+ print("Extracting {} to {}".format(path, datadir))
175
+ os.makedirs(datadir, exist_ok=True)
176
+ with tarfile.open(path, "r:") as tar:
177
+ tar.extractall(path=datadir)
178
+
179
+ print("Extracting sub-tars.")
180
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
181
+ for subpath in tqdm(subpaths):
182
+ subdir = subpath[:-len(".tar")]
183
+ os.makedirs(subdir, exist_ok=True)
184
+ with tarfile.open(subpath, "r:") as tar:
185
+ tar.extractall(path=subdir)
186
+
187
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
188
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
189
+ filelist = sorted(filelist)
190
+ filelist = "\n".join(filelist)+"\n"
191
+ with open(self.txt_filelist, "w") as f:
192
+ f.write(filelist)
193
+
194
+ tdu.mark_prepared(self.root)
195
+
196
+
197
+ class ImageNetValidation(ImageNetBase):
198
+ NAME = "ILSVRC2012_validation"
199
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
200
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
201
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
202
+ FILES = [
203
+ "ILSVRC2012_img_val.tar",
204
+ "validation_synset.txt",
205
+ ]
206
+ SIZES = [
207
+ 6744924160,
208
+ 1950000,
209
+ ]
210
+
211
+ def __init__(self, process_images=True, data_root=None, **kwargs):
212
+ self.data_root = data_root
213
+ self.process_images = process_images
214
+ super().__init__(**kwargs)
215
+
216
+ def _prepare(self):
217
+ if self.data_root:
218
+ self.root = os.path.join(self.data_root, self.NAME)
219
+ else:
220
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
221
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
222
+ self.datadir = os.path.join(self.root, "data")
223
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
224
+ self.expected_length = 50000
225
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
226
+ default=False)
227
+ if not tdu.is_prepared(self.root):
228
+ # prep
229
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
230
+
231
+ datadir = self.datadir
232
+ if not os.path.exists(datadir):
233
+ path = os.path.join(self.root, self.FILES[0])
234
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
235
+ import academictorrents as at
236
+ atpath = at.get(self.AT_HASH, datastore=self.root)
237
+ assert atpath == path
238
+
239
+ print("Extracting {} to {}".format(path, datadir))
240
+ os.makedirs(datadir, exist_ok=True)
241
+ with tarfile.open(path, "r:") as tar:
242
+ tar.extractall(path=datadir)
243
+
244
+ vspath = os.path.join(self.root, self.FILES[1])
245
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
246
+ download(self.VS_URL, vspath)
247
+
248
+ with open(vspath, "r") as f:
249
+ synset_dict = f.read().splitlines()
250
+ synset_dict = dict(line.split() for line in synset_dict)
251
+
252
+ print("Reorganizing into synset folders")
253
+ synsets = np.unique(list(synset_dict.values()))
254
+ for s in synsets:
255
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
256
+ for k, v in synset_dict.items():
257
+ src = os.path.join(datadir, k)
258
+ dst = os.path.join(datadir, v)
259
+ shutil.move(src, dst)
260
+
261
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
262
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
263
+ filelist = sorted(filelist)
264
+ filelist = "\n".join(filelist)+"\n"
265
+ with open(self.txt_filelist, "w") as f:
266
+ f.write(filelist)
267
+
268
+ tdu.mark_prepared(self.root)
269
+
270
+
271
+
272
+ class ImageNetSR(Dataset):
273
+ def __init__(self, size=None,
274
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
275
+ random_crop=True):
276
+ """
277
+ Imagenet Superresolution Dataloader
278
+ Performs following ops in order:
279
+ 1. crops a crop of size s from image either as random or center crop
280
+ 2. resizes crop to size with cv2.area_interpolation
281
+ 3. degrades resized crop with degradation_fn
282
+
283
+ :param size: resizing to size after cropping
284
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
285
+ :param downscale_f: Low Resolution Downsample factor
286
+ :param min_crop_f: determines crop size s,
287
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
288
+ :param max_crop_f: ""
289
+ :param data_root:
290
+ :param random_crop:
291
+ """
292
+ self.base = self.get_base()
293
+ assert size
294
+ assert (size / downscale_f).is_integer()
295
+ self.size = size
296
+ self.LR_size = int(size / downscale_f)
297
+ self.min_crop_f = min_crop_f
298
+ self.max_crop_f = max_crop_f
299
+ assert(max_crop_f <= 1.)
300
+ self.center_crop = not random_crop
301
+
302
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
303
+
304
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
305
+
306
+ if degradation == "bsrgan":
307
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
308
+
309
+ elif degradation == "bsrgan_light":
310
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
311
+
312
+ else:
313
+ interpolation_fn = {
314
+ "cv_nearest": cv2.INTER_NEAREST,
315
+ "cv_bilinear": cv2.INTER_LINEAR,
316
+ "cv_bicubic": cv2.INTER_CUBIC,
317
+ "cv_area": cv2.INTER_AREA,
318
+ "cv_lanczos": cv2.INTER_LANCZOS4,
319
+ "pil_nearest": PIL.Image.NEAREST,
320
+ "pil_bilinear": PIL.Image.BILINEAR,
321
+ "pil_bicubic": PIL.Image.BICUBIC,
322
+ "pil_box": PIL.Image.BOX,
323
+ "pil_hamming": PIL.Image.HAMMING,
324
+ "pil_lanczos": PIL.Image.LANCZOS,
325
+ }[degradation]
326
+
327
+ self.pil_interpolation = degradation.startswith("pil_")
328
+
329
+ if self.pil_interpolation:
330
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
331
+
332
+ else:
333
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
334
+ interpolation=interpolation_fn)
335
+
336
+ def __len__(self):
337
+ return len(self.base)
338
+
339
+ def __getitem__(self, i):
340
+ example = self.base[i]
341
+ image = Image.open(example["file_path_"])
342
+
343
+ if not image.mode == "RGB":
344
+ image = image.convert("RGB")
345
+
346
+ image = np.array(image).astype(np.uint8)
347
+
348
+ min_side_len = min(image.shape[:2])
349
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
350
+ crop_side_len = int(crop_side_len)
351
+
352
+ if self.center_crop:
353
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
354
+
355
+ else:
356
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
357
+
358
+ image = self.cropper(image=image)["image"]
359
+ image = self.image_rescaler(image=image)["image"]
360
+
361
+ if self.pil_interpolation:
362
+ image_pil = PIL.Image.fromarray(image)
363
+ LR_image = self.degradation_process(image_pil)
364
+ LR_image = np.array(LR_image).astype(np.uint8)
365
+
366
+ else:
367
+ LR_image = self.degradation_process(image=image)["image"]
368
+
369
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
370
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
371
+
372
+ return example
373
+
374
+
375
+ class ImageNetSRTrain(ImageNetSR):
376
+ def __init__(self, **kwargs):
377
+ super().__init__(**kwargs)
378
+
379
+ def get_base(self):
380
+ with open("ldm/data/imagenet_train_hr_indices.p", "rb") as f:
381
+ indices = pickle.load(f)
382
+ dset = ImageNetTrain(process_images=False,)
383
+ return Subset(dset, indices)
384
+
385
+
386
+ class ImageNetSRValidation(ImageNetSR):
387
+ def __init__(self, **kwargs):
388
+ super().__init__(**kwargs)
389
+
390
+ def get_base(self):
391
+ with open("ldm/data/imagenet_val_hr_indices.p", "rb") as f:
392
+ indices = pickle.load(f)
393
+ dset = ImageNetValidation(process_images=False,)
394
+ return Subset(dset, indices)
gligen/ldm/data/imagenet_clsidx_to_label.txt ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 0: 'tench, Tinca tinca',
2
+ 1: 'goldfish, Carassius auratus',
3
+ 2: 'great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias',
4
+ 3: 'tiger shark, Galeocerdo cuvieri',
5
+ 4: 'hammerhead, hammerhead shark',
6
+ 5: 'electric ray, crampfish, numbfish, torpedo',
7
+ 6: 'stingray',
8
+ 7: 'cock',
9
+ 8: 'hen',
10
+ 9: 'ostrich, Struthio camelus',
11
+ 10: 'brambling, Fringilla montifringilla',
12
+ 11: 'goldfinch, Carduelis carduelis',
13
+ 12: 'house finch, linnet, Carpodacus mexicanus',
14
+ 13: 'junco, snowbird',
15
+ 14: 'indigo bunting, indigo finch, indigo bird, Passerina cyanea',
16
+ 15: 'robin, American robin, Turdus migratorius',
17
+ 16: 'bulbul',
18
+ 17: 'jay',
19
+ 18: 'magpie',
20
+ 19: 'chickadee',
21
+ 20: 'water ouzel, dipper',
22
+ 21: 'kite',
23
+ 22: 'bald eagle, American eagle, Haliaeetus leucocephalus',
24
+ 23: 'vulture',
25
+ 24: 'great grey owl, great gray owl, Strix nebulosa',
26
+ 25: 'European fire salamander, Salamandra salamandra',
27
+ 26: 'common newt, Triturus vulgaris',
28
+ 27: 'eft',
29
+ 28: 'spotted salamander, Ambystoma maculatum',
30
+ 29: 'axolotl, mud puppy, Ambystoma mexicanum',
31
+ 30: 'bullfrog, Rana catesbeiana',
32
+ 31: 'tree frog, tree-frog',
33
+ 32: 'tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui',
34
+ 33: 'loggerhead, loggerhead turtle, Caretta caretta',
35
+ 34: 'leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea',
36
+ 35: 'mud turtle',
37
+ 36: 'terrapin',
38
+ 37: 'box turtle, box tortoise',
39
+ 38: 'banded gecko',
40
+ 39: 'common iguana, iguana, Iguana iguana',
41
+ 40: 'American chameleon, anole, Anolis carolinensis',
42
+ 41: 'whiptail, whiptail lizard',
43
+ 42: 'agama',
44
+ 43: 'frilled lizard, Chlamydosaurus kingi',
45
+ 44: 'alligator lizard',
46
+ 45: 'Gila monster, Heloderma suspectum',
47
+ 46: 'green lizard, Lacerta viridis',
48
+ 47: 'African chameleon, Chamaeleo chamaeleon',
49
+ 48: 'Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis',
50
+ 49: 'African crocodile, Nile crocodile, Crocodylus niloticus',
51
+ 50: 'American alligator, Alligator mississipiensis',
52
+ 51: 'triceratops',
53
+ 52: 'thunder snake, worm snake, Carphophis amoenus',
54
+ 53: 'ringneck snake, ring-necked snake, ring snake',
55
+ 54: 'hognose snake, puff adder, sand viper',
56
+ 55: 'green snake, grass snake',
57
+ 56: 'king snake, kingsnake',
58
+ 57: 'garter snake, grass snake',
59
+ 58: 'water snake',
60
+ 59: 'vine snake',
61
+ 60: 'night snake, Hypsiglena torquata',
62
+ 61: 'boa constrictor, Constrictor constrictor',
63
+ 62: 'rock python, rock snake, Python sebae',
64
+ 63: 'Indian cobra, Naja naja',
65
+ 64: 'green mamba',
66
+ 65: 'sea snake',
67
+ 66: 'horned viper, cerastes, sand viper, horned asp, Cerastes cornutus',
68
+ 67: 'diamondback, diamondback rattlesnake, Crotalus adamanteus',
69
+ 68: 'sidewinder, horned rattlesnake, Crotalus cerastes',
70
+ 69: 'trilobite',
71
+ 70: 'harvestman, daddy longlegs, Phalangium opilio',
72
+ 71: 'scorpion',
73
+ 72: 'black and gold garden spider, Argiope aurantia',
74
+ 73: 'barn spider, Araneus cavaticus',
75
+ 74: 'garden spider, Aranea diademata',
76
+ 75: 'black widow, Latrodectus mactans',
77
+ 76: 'tarantula',
78
+ 77: 'wolf spider, hunting spider',
79
+ 78: 'tick',
80
+ 79: 'centipede',
81
+ 80: 'black grouse',
82
+ 81: 'ptarmigan',
83
+ 82: 'ruffed grouse, partridge, Bonasa umbellus',
84
+ 83: 'prairie chicken, prairie grouse, prairie fowl',
85
+ 84: 'peacock',
86
+ 85: 'quail',
87
+ 86: 'partridge',
88
+ 87: 'African grey, African gray, Psittacus erithacus',
89
+ 88: 'macaw',
90
+ 89: 'sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita',
91
+ 90: 'lorikeet',
92
+ 91: 'coucal',
93
+ 92: 'bee eater',
94
+ 93: 'hornbill',
95
+ 94: 'hummingbird',
96
+ 95: 'jacamar',
97
+ 96: 'toucan',
98
+ 97: 'drake',
99
+ 98: 'red-breasted merganser, Mergus serrator',
100
+ 99: 'goose',
101
+ 100: 'black swan, Cygnus atratus',
102
+ 101: 'tusker',
103
+ 102: 'echidna, spiny anteater, anteater',
104
+ 103: 'platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus',
105
+ 104: 'wallaby, brush kangaroo',
106
+ 105: 'koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus',
107
+ 106: 'wombat',
108
+ 107: 'jellyfish',
109
+ 108: 'sea anemone, anemone',
110
+ 109: 'brain coral',
111
+ 110: 'flatworm, platyhelminth',
112
+ 111: 'nematode, nematode worm, roundworm',
113
+ 112: 'conch',
114
+ 113: 'snail',
115
+ 114: 'slug',
116
+ 115: 'sea slug, nudibranch',
117
+ 116: 'chiton, coat-of-mail shell, sea cradle, polyplacophore',
118
+ 117: 'chambered nautilus, pearly nautilus, nautilus',
119
+ 118: 'Dungeness crab, Cancer magister',
120
+ 119: 'rock crab, Cancer irroratus',
121
+ 120: 'fiddler crab',
122
+ 121: 'king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica',
123
+ 122: 'American lobster, Northern lobster, Maine lobster, Homarus americanus',
124
+ 123: 'spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish',
125
+ 124: 'crayfish, crawfish, crawdad, crawdaddy',
126
+ 125: 'hermit crab',
127
+ 126: 'isopod',
128
+ 127: 'white stork, Ciconia ciconia',
129
+ 128: 'black stork, Ciconia nigra',
130
+ 129: 'spoonbill',
131
+ 130: 'flamingo',
132
+ 131: 'little blue heron, Egretta caerulea',
133
+ 132: 'American egret, great white heron, Egretta albus',
134
+ 133: 'bittern',
135
+ 134: 'crane',
136
+ 135: 'limpkin, Aramus pictus',
137
+ 136: 'European gallinule, Porphyrio porphyrio',
138
+ 137: 'American coot, marsh hen, mud hen, water hen, Fulica americana',
139
+ 138: 'bustard',
140
+ 139: 'ruddy turnstone, Arenaria interpres',
141
+ 140: 'red-backed sandpiper, dunlin, Erolia alpina',
142
+ 141: 'redshank, Tringa totanus',
143
+ 142: 'dowitcher',
144
+ 143: 'oystercatcher, oyster catcher',
145
+ 144: 'pelican',
146
+ 145: 'king penguin, Aptenodytes patagonica',
147
+ 146: 'albatross, mollymawk',
148
+ 147: 'grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus',
149
+ 148: 'killer whale, killer, orca, grampus, sea wolf, Orcinus orca',
150
+ 149: 'dugong, Dugong dugon',
151
+ 150: 'sea lion',
152
+ 151: 'Chihuahua',
153
+ 152: 'Japanese spaniel',
154
+ 153: 'Maltese dog, Maltese terrier, Maltese',
155
+ 154: 'Pekinese, Pekingese, Peke',
156
+ 155: 'Shih-Tzu',
157
+ 156: 'Blenheim spaniel',
158
+ 157: 'papillon',
159
+ 158: 'toy terrier',
160
+ 159: 'Rhodesian ridgeback',
161
+ 160: 'Afghan hound, Afghan',
162
+ 161: 'basset, basset hound',
163
+ 162: 'beagle',
164
+ 163: 'bloodhound, sleuthhound',
165
+ 164: 'bluetick',
166
+ 165: 'black-and-tan coonhound',
167
+ 166: 'Walker hound, Walker foxhound',
168
+ 167: 'English foxhound',
169
+ 168: 'redbone',
170
+ 169: 'borzoi, Russian wolfhound',
171
+ 170: 'Irish wolfhound',
172
+ 171: 'Italian greyhound',
173
+ 172: 'whippet',
174
+ 173: 'Ibizan hound, Ibizan Podenco',
175
+ 174: 'Norwegian elkhound, elkhound',
176
+ 175: 'otterhound, otter hound',
177
+ 176: 'Saluki, gazelle hound',
178
+ 177: 'Scottish deerhound, deerhound',
179
+ 178: 'Weimaraner',
180
+ 179: 'Staffordshire bullterrier, Staffordshire bull terrier',
181
+ 180: 'American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier',
182
+ 181: 'Bedlington terrier',
183
+ 182: 'Border terrier',
184
+ 183: 'Kerry blue terrier',
185
+ 184: 'Irish terrier',
186
+ 185: 'Norfolk terrier',
187
+ 186: 'Norwich terrier',
188
+ 187: 'Yorkshire terrier',
189
+ 188: 'wire-haired fox terrier',
190
+ 189: 'Lakeland terrier',
191
+ 190: 'Sealyham terrier, Sealyham',
192
+ 191: 'Airedale, Airedale terrier',
193
+ 192: 'cairn, cairn terrier',
194
+ 193: 'Australian terrier',
195
+ 194: 'Dandie Dinmont, Dandie Dinmont terrier',
196
+ 195: 'Boston bull, Boston terrier',
197
+ 196: 'miniature schnauzer',
198
+ 197: 'giant schnauzer',
199
+ 198: 'standard schnauzer',
200
+ 199: 'Scotch terrier, Scottish terrier, Scottie',
201
+ 200: 'Tibetan terrier, chrysanthemum dog',
202
+ 201: 'silky terrier, Sydney silky',
203
+ 202: 'soft-coated wheaten terrier',
204
+ 203: 'West Highland white terrier',
205
+ 204: 'Lhasa, Lhasa apso',
206
+ 205: 'flat-coated retriever',
207
+ 206: 'curly-coated retriever',
208
+ 207: 'golden retriever',
209
+ 208: 'Labrador retriever',
210
+ 209: 'Chesapeake Bay retriever',
211
+ 210: 'German short-haired pointer',
212
+ 211: 'vizsla, Hungarian pointer',
213
+ 212: 'English setter',
214
+ 213: 'Irish setter, red setter',
215
+ 214: 'Gordon setter',
216
+ 215: 'Brittany spaniel',
217
+ 216: 'clumber, clumber spaniel',
218
+ 217: 'English springer, English springer spaniel',
219
+ 218: 'Welsh springer spaniel',
220
+ 219: 'cocker spaniel, English cocker spaniel, cocker',
221
+ 220: 'Sussex spaniel',
222
+ 221: 'Irish water spaniel',
223
+ 222: 'kuvasz',
224
+ 223: 'schipperke',
225
+ 224: 'groenendael',
226
+ 225: 'malinois',
227
+ 226: 'briard',
228
+ 227: 'kelpie',
229
+ 228: 'komondor',
230
+ 229: 'Old English sheepdog, bobtail',
231
+ 230: 'Shetland sheepdog, Shetland sheep dog, Shetland',
232
+ 231: 'collie',
233
+ 232: 'Border collie',
234
+ 233: 'Bouvier des Flandres, Bouviers des Flandres',
235
+ 234: 'Rottweiler',
236
+ 235: 'German shepherd, German shepherd dog, German police dog, alsatian',
237
+ 236: 'Doberman, Doberman pinscher',
238
+ 237: 'miniature pinscher',
239
+ 238: 'Greater Swiss Mountain dog',
240
+ 239: 'Bernese mountain dog',
241
+ 240: 'Appenzeller',
242
+ 241: 'EntleBucher',
243
+ 242: 'boxer',
244
+ 243: 'bull mastiff',
245
+ 244: 'Tibetan mastiff',
246
+ 245: 'French bulldog',
247
+ 246: 'Great Dane',
248
+ 247: 'Saint Bernard, St Bernard',
249
+ 248: 'Eskimo dog, husky',
250
+ 249: 'malamute, malemute, Alaskan malamute',
251
+ 250: 'Siberian husky',
252
+ 251: 'dalmatian, coach dog, carriage dog',
253
+ 252: 'affenpinscher, monkey pinscher, monkey dog',
254
+ 253: 'basenji',
255
+ 254: 'pug, pug-dog',
256
+ 255: 'Leonberg',
257
+ 256: 'Newfoundland, Newfoundland dog',
258
+ 257: 'Great Pyrenees',
259
+ 258: 'Samoyed, Samoyede',
260
+ 259: 'Pomeranian',
261
+ 260: 'chow, chow chow',
262
+ 261: 'keeshond',
263
+ 262: 'Brabancon griffon',
264
+ 263: 'Pembroke, Pembroke Welsh corgi',
265
+ 264: 'Cardigan, Cardigan Welsh corgi',
266
+ 265: 'toy poodle',
267
+ 266: 'miniature poodle',
268
+ 267: 'standard poodle',
269
+ 268: 'Mexican hairless',
270
+ 269: 'timber wolf, grey wolf, gray wolf, Canis lupus',
271
+ 270: 'white wolf, Arctic wolf, Canis lupus tundrarum',
272
+ 271: 'red wolf, maned wolf, Canis rufus, Canis niger',
273
+ 272: 'coyote, prairie wolf, brush wolf, Canis latrans',
274
+ 273: 'dingo, warrigal, warragal, Canis dingo',
275
+ 274: 'dhole, Cuon alpinus',
276
+ 275: 'African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus',
277
+ 276: 'hyena, hyaena',
278
+ 277: 'red fox, Vulpes vulpes',
279
+ 278: 'kit fox, Vulpes macrotis',
280
+ 279: 'Arctic fox, white fox, Alopex lagopus',
281
+ 280: 'grey fox, gray fox, Urocyon cinereoargenteus',
282
+ 281: 'tabby, tabby cat',
283
+ 282: 'tiger cat',
284
+ 283: 'Persian cat',
285
+ 284: 'Siamese cat, Siamese',
286
+ 285: 'Egyptian cat',
287
+ 286: 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor',
288
+ 287: 'lynx, catamount',
289
+ 288: 'leopard, Panthera pardus',
290
+ 289: 'snow leopard, ounce, Panthera uncia',
291
+ 290: 'jaguar, panther, Panthera onca, Felis onca',
292
+ 291: 'lion, king of beasts, Panthera leo',
293
+ 292: 'tiger, Panthera tigris',
294
+ 293: 'cheetah, chetah, Acinonyx jubatus',
295
+ 294: 'brown bear, bruin, Ursus arctos',
296
+ 295: 'American black bear, black bear, Ursus americanus, Euarctos americanus',
297
+ 296: 'ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus',
298
+ 297: 'sloth bear, Melursus ursinus, Ursus ursinus',
299
+ 298: 'mongoose',
300
+ 299: 'meerkat, mierkat',
301
+ 300: 'tiger beetle',
302
+ 301: 'ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle',
303
+ 302: 'ground beetle, carabid beetle',
304
+ 303: 'long-horned beetle, longicorn, longicorn beetle',
305
+ 304: 'leaf beetle, chrysomelid',
306
+ 305: 'dung beetle',
307
+ 306: 'rhinoceros beetle',
308
+ 307: 'weevil',
309
+ 308: 'fly',
310
+ 309: 'bee',
311
+ 310: 'ant, emmet, pismire',
312
+ 311: 'grasshopper, hopper',
313
+ 312: 'cricket',
314
+ 313: 'walking stick, walkingstick, stick insect',
315
+ 314: 'cockroach, roach',
316
+ 315: 'mantis, mantid',
317
+ 316: 'cicada, cicala',
318
+ 317: 'leafhopper',
319
+ 318: 'lacewing, lacewing fly',
320
+ 319: "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
321
+ 320: 'damselfly',
322
+ 321: 'admiral',
323
+ 322: 'ringlet, ringlet butterfly',
324
+ 323: 'monarch, monarch butterfly, milkweed butterfly, Danaus plexippus',
325
+ 324: 'cabbage butterfly',
326
+ 325: 'sulphur butterfly, sulfur butterfly',
327
+ 326: 'lycaenid, lycaenid butterfly',
328
+ 327: 'starfish, sea star',
329
+ 328: 'sea urchin',
330
+ 329: 'sea cucumber, holothurian',
331
+ 330: 'wood rabbit, cottontail, cottontail rabbit',
332
+ 331: 'hare',
333
+ 332: 'Angora, Angora rabbit',
334
+ 333: 'hamster',
335
+ 334: 'porcupine, hedgehog',
336
+ 335: 'fox squirrel, eastern fox squirrel, Sciurus niger',
337
+ 336: 'marmot',
338
+ 337: 'beaver',
339
+ 338: 'guinea pig, Cavia cobaya',
340
+ 339: 'sorrel',
341
+ 340: 'zebra',
342
+ 341: 'hog, pig, grunter, squealer, Sus scrofa',
343
+ 342: 'wild boar, boar, Sus scrofa',
344
+ 343: 'warthog',
345
+ 344: 'hippopotamus, hippo, river horse, Hippopotamus amphibius',
346
+ 345: 'ox',
347
+ 346: 'water buffalo, water ox, Asiatic buffalo, Bubalus bubalis',
348
+ 347: 'bison',
349
+ 348: 'ram, tup',
350
+ 349: 'bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis',
351
+ 350: 'ibex, Capra ibex',
352
+ 351: 'hartebeest',
353
+ 352: 'impala, Aepyceros melampus',
354
+ 353: 'gazelle',
355
+ 354: 'Arabian camel, dromedary, Camelus dromedarius',
356
+ 355: 'llama',
357
+ 356: 'weasel',
358
+ 357: 'mink',
359
+ 358: 'polecat, fitch, foulmart, foumart, Mustela putorius',
360
+ 359: 'black-footed ferret, ferret, Mustela nigripes',
361
+ 360: 'otter',
362
+ 361: 'skunk, polecat, wood pussy',
363
+ 362: 'badger',
364
+ 363: 'armadillo',
365
+ 364: 'three-toed sloth, ai, Bradypus tridactylus',
366
+ 365: 'orangutan, orang, orangutang, Pongo pygmaeus',
367
+ 366: 'gorilla, Gorilla gorilla',
368
+ 367: 'chimpanzee, chimp, Pan troglodytes',
369
+ 368: 'gibbon, Hylobates lar',
370
+ 369: 'siamang, Hylobates syndactylus, Symphalangus syndactylus',
371
+ 370: 'guenon, guenon monkey',
372
+ 371: 'patas, hussar monkey, Erythrocebus patas',
373
+ 372: 'baboon',
374
+ 373: 'macaque',
375
+ 374: 'langur',
376
+ 375: 'colobus, colobus monkey',
377
+ 376: 'proboscis monkey, Nasalis larvatus',
378
+ 377: 'marmoset',
379
+ 378: 'capuchin, ringtail, Cebus capucinus',
380
+ 379: 'howler monkey, howler',
381
+ 380: 'titi, titi monkey',
382
+ 381: 'spider monkey, Ateles geoffroyi',
383
+ 382: 'squirrel monkey, Saimiri sciureus',
384
+ 383: 'Madagascar cat, ring-tailed lemur, Lemur catta',
385
+ 384: 'indri, indris, Indri indri, Indri brevicaudatus',
386
+ 385: 'Indian elephant, Elephas maximus',
387
+ 386: 'African elephant, Loxodonta africana',
388
+ 387: 'lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens',
389
+ 388: 'giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca',
390
+ 389: 'barracouta, snoek',
391
+ 390: 'eel',
392
+ 391: 'coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch',
393
+ 392: 'rock beauty, Holocanthus tricolor',
394
+ 393: 'anemone fish',
395
+ 394: 'sturgeon',
396
+ 395: 'gar, garfish, garpike, billfish, Lepisosteus osseus',
397
+ 396: 'lionfish',
398
+ 397: 'puffer, pufferfish, blowfish, globefish',
399
+ 398: 'abacus',
400
+ 399: 'abaya',
401
+ 400: "academic gown, academic robe, judge's robe",
402
+ 401: 'accordion, piano accordion, squeeze box',
403
+ 402: 'acoustic guitar',
404
+ 403: 'aircraft carrier, carrier, flattop, attack aircraft carrier',
405
+ 404: 'airliner',
406
+ 405: 'airship, dirigible',
407
+ 406: 'altar',
408
+ 407: 'ambulance',
409
+ 408: 'amphibian, amphibious vehicle',
410
+ 409: 'analog clock',
411
+ 410: 'apiary, bee house',
412
+ 411: 'apron',
413
+ 412: 'ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin',
414
+ 413: 'assault rifle, assault gun',
415
+ 414: 'backpack, back pack, knapsack, packsack, rucksack, haversack',
416
+ 415: 'bakery, bakeshop, bakehouse',
417
+ 416: 'balance beam, beam',
418
+ 417: 'balloon',
419
+ 418: 'ballpoint, ballpoint pen, ballpen, Biro',
420
+ 419: 'Band Aid',
421
+ 420: 'banjo',
422
+ 421: 'bannister, banister, balustrade, balusters, handrail',
423
+ 422: 'barbell',
424
+ 423: 'barber chair',
425
+ 424: 'barbershop',
426
+ 425: 'barn',
427
+ 426: 'barometer',
428
+ 427: 'barrel, cask',
429
+ 428: 'barrow, garden cart, lawn cart, wheelbarrow',
430
+ 429: 'baseball',
431
+ 430: 'basketball',
432
+ 431: 'bassinet',
433
+ 432: 'bassoon',
434
+ 433: 'bathing cap, swimming cap',
435
+ 434: 'bath towel',
436
+ 435: 'bathtub, bathing tub, bath, tub',
437
+ 436: 'beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon',
438
+ 437: 'beacon, lighthouse, beacon light, pharos',
439
+ 438: 'beaker',
440
+ 439: 'bearskin, busby, shako',
441
+ 440: 'beer bottle',
442
+ 441: 'beer glass',
443
+ 442: 'bell cote, bell cot',
444
+ 443: 'bib',
445
+ 444: 'bicycle-built-for-two, tandem bicycle, tandem',
446
+ 445: 'bikini, two-piece',
447
+ 446: 'binder, ring-binder',
448
+ 447: 'binoculars, field glasses, opera glasses',
449
+ 448: 'birdhouse',
450
+ 449: 'boathouse',
451
+ 450: 'bobsled, bobsleigh, bob',
452
+ 451: 'bolo tie, bolo, bola tie, bola',
453
+ 452: 'bonnet, poke bonnet',
454
+ 453: 'bookcase',
455
+ 454: 'bookshop, bookstore, bookstall',
456
+ 455: 'bottlecap',
457
+ 456: 'bow',
458
+ 457: 'bow tie, bow-tie, bowtie',
459
+ 458: 'brass, memorial tablet, plaque',
460
+ 459: 'brassiere, bra, bandeau',
461
+ 460: 'breakwater, groin, groyne, mole, bulwark, seawall, jetty',
462
+ 461: 'breastplate, aegis, egis',
463
+ 462: 'broom',
464
+ 463: 'bucket, pail',
465
+ 464: 'buckle',
466
+ 465: 'bulletproof vest',
467
+ 466: 'bullet train, bullet',
468
+ 467: 'butcher shop, meat market',
469
+ 468: 'cab, hack, taxi, taxicab',
470
+ 469: 'caldron, cauldron',
471
+ 470: 'candle, taper, wax light',
472
+ 471: 'cannon',
473
+ 472: 'canoe',
474
+ 473: 'can opener, tin opener',
475
+ 474: 'cardigan',
476
+ 475: 'car mirror',
477
+ 476: 'carousel, carrousel, merry-go-round, roundabout, whirligig',
478
+ 477: "carpenter's kit, tool kit",
479
+ 478: 'carton',
480
+ 479: 'car wheel',
481
+ 480: 'cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM',
482
+ 481: 'cassette',
483
+ 482: 'cassette player',
484
+ 483: 'castle',
485
+ 484: 'catamaran',
486
+ 485: 'CD player',
487
+ 486: 'cello, violoncello',
488
+ 487: 'cellular telephone, cellular phone, cellphone, cell, mobile phone',
489
+ 488: 'chain',
490
+ 489: 'chainlink fence',
491
+ 490: 'chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour',
492
+ 491: 'chain saw, chainsaw',
493
+ 492: 'chest',
494
+ 493: 'chiffonier, commode',
495
+ 494: 'chime, bell, gong',
496
+ 495: 'china cabinet, china closet',
497
+ 496: 'Christmas stocking',
498
+ 497: 'church, church building',
499
+ 498: 'cinema, movie theater, movie theatre, movie house, picture palace',
500
+ 499: 'cleaver, meat cleaver, chopper',
501
+ 500: 'cliff dwelling',
502
+ 501: 'cloak',
503
+ 502: 'clog, geta, patten, sabot',
504
+ 503: 'cocktail shaker',
505
+ 504: 'coffee mug',
506
+ 505: 'coffeepot',
507
+ 506: 'coil, spiral, volute, whorl, helix',
508
+ 507: 'combination lock',
509
+ 508: 'computer keyboard, keypad',
510
+ 509: 'confectionery, confectionary, candy store',
511
+ 510: 'container ship, containership, container vessel',
512
+ 511: 'convertible',
513
+ 512: 'corkscrew, bottle screw',
514
+ 513: 'cornet, horn, trumpet, trump',
515
+ 514: 'cowboy boot',
516
+ 515: 'cowboy hat, ten-gallon hat',
517
+ 516: 'cradle',
518
+ 517: 'crane',
519
+ 518: 'crash helmet',
520
+ 519: 'crate',
521
+ 520: 'crib, cot',
522
+ 521: 'Crock Pot',
523
+ 522: 'croquet ball',
524
+ 523: 'crutch',
525
+ 524: 'cuirass',
526
+ 525: 'dam, dike, dyke',
527
+ 526: 'desk',
528
+ 527: 'desktop computer',
529
+ 528: 'dial telephone, dial phone',
530
+ 529: 'diaper, nappy, napkin',
531
+ 530: 'digital clock',
532
+ 531: 'digital watch',
533
+ 532: 'dining table, board',
534
+ 533: 'dishrag, dishcloth',
535
+ 534: 'dishwasher, dish washer, dishwashing machine',
536
+ 535: 'disk brake, disc brake',
537
+ 536: 'dock, dockage, docking facility',
538
+ 537: 'dogsled, dog sled, dog sleigh',
539
+ 538: 'dome',
540
+ 539: 'doormat, welcome mat',
541
+ 540: 'drilling platform, offshore rig',
542
+ 541: 'drum, membranophone, tympan',
543
+ 542: 'drumstick',
544
+ 543: 'dumbbell',
545
+ 544: 'Dutch oven',
546
+ 545: 'electric fan, blower',
547
+ 546: 'electric guitar',
548
+ 547: 'electric locomotive',
549
+ 548: 'entertainment center',
550
+ 549: 'envelope',
551
+ 550: 'espresso maker',
552
+ 551: 'face powder',
553
+ 552: 'feather boa, boa',
554
+ 553: 'file, file cabinet, filing cabinet',
555
+ 554: 'fireboat',
556
+ 555: 'fire engine, fire truck',
557
+ 556: 'fire screen, fireguard',
558
+ 557: 'flagpole, flagstaff',
559
+ 558: 'flute, transverse flute',
560
+ 559: 'folding chair',
561
+ 560: 'football helmet',
562
+ 561: 'forklift',
563
+ 562: 'fountain',
564
+ 563: 'fountain pen',
565
+ 564: 'four-poster',
566
+ 565: 'freight car',
567
+ 566: 'French horn, horn',
568
+ 567: 'frying pan, frypan, skillet',
569
+ 568: 'fur coat',
570
+ 569: 'garbage truck, dustcart',
571
+ 570: 'gasmask, respirator, gas helmet',
572
+ 571: 'gas pump, gasoline pump, petrol pump, island dispenser',
573
+ 572: 'goblet',
574
+ 573: 'go-kart',
575
+ 574: 'golf ball',
576
+ 575: 'golfcart, golf cart',
577
+ 576: 'gondola',
578
+ 577: 'gong, tam-tam',
579
+ 578: 'gown',
580
+ 579: 'grand piano, grand',
581
+ 580: 'greenhouse, nursery, glasshouse',
582
+ 581: 'grille, radiator grille',
583
+ 582: 'grocery store, grocery, food market, market',
584
+ 583: 'guillotine',
585
+ 584: 'hair slide',
586
+ 585: 'hair spray',
587
+ 586: 'half track',
588
+ 587: 'hammer',
589
+ 588: 'hamper',
590
+ 589: 'hand blower, blow dryer, blow drier, hair dryer, hair drier',
591
+ 590: 'hand-held computer, hand-held microcomputer',
592
+ 591: 'handkerchief, hankie, hanky, hankey',
593
+ 592: 'hard disc, hard disk, fixed disk',
594
+ 593: 'harmonica, mouth organ, harp, mouth harp',
595
+ 594: 'harp',
596
+ 595: 'harvester, reaper',
597
+ 596: 'hatchet',
598
+ 597: 'holster',
599
+ 598: 'home theater, home theatre',
600
+ 599: 'honeycomb',
601
+ 600: 'hook, claw',
602
+ 601: 'hoopskirt, crinoline',
603
+ 602: 'horizontal bar, high bar',
604
+ 603: 'horse cart, horse-cart',
605
+ 604: 'hourglass',
606
+ 605: 'iPod',
607
+ 606: 'iron, smoothing iron',
608
+ 607: "jack-o'-lantern",
609
+ 608: 'jean, blue jean, denim',
610
+ 609: 'jeep, landrover',
611
+ 610: 'jersey, T-shirt, tee shirt',
612
+ 611: 'jigsaw puzzle',
613
+ 612: 'jinrikisha, ricksha, rickshaw',
614
+ 613: 'joystick',
615
+ 614: 'kimono',
616
+ 615: 'knee pad',
617
+ 616: 'knot',
618
+ 617: 'lab coat, laboratory coat',
619
+ 618: 'ladle',
620
+ 619: 'lampshade, lamp shade',
621
+ 620: 'laptop, laptop computer',
622
+ 621: 'lawn mower, mower',
623
+ 622: 'lens cap, lens cover',
624
+ 623: 'letter opener, paper knife, paperknife',
625
+ 624: 'library',
626
+ 625: 'lifeboat',
627
+ 626: 'lighter, light, igniter, ignitor',
628
+ 627: 'limousine, limo',
629
+ 628: 'liner, ocean liner',
630
+ 629: 'lipstick, lip rouge',
631
+ 630: 'Loafer',
632
+ 631: 'lotion',
633
+ 632: 'loudspeaker, speaker, speaker unit, loudspeaker system, speaker system',
634
+ 633: "loupe, jeweler's loupe",
635
+ 634: 'lumbermill, sawmill',
636
+ 635: 'magnetic compass',
637
+ 636: 'mailbag, postbag',
638
+ 637: 'mailbox, letter box',
639
+ 638: 'maillot',
640
+ 639: 'maillot, tank suit',
641
+ 640: 'manhole cover',
642
+ 641: 'maraca',
643
+ 642: 'marimba, xylophone',
644
+ 643: 'mask',
645
+ 644: 'matchstick',
646
+ 645: 'maypole',
647
+ 646: 'maze, labyrinth',
648
+ 647: 'measuring cup',
649
+ 648: 'medicine chest, medicine cabinet',
650
+ 649: 'megalith, megalithic structure',
651
+ 650: 'microphone, mike',
652
+ 651: 'microwave, microwave oven',
653
+ 652: 'military uniform',
654
+ 653: 'milk can',
655
+ 654: 'minibus',
656
+ 655: 'miniskirt, mini',
657
+ 656: 'minivan',
658
+ 657: 'missile',
659
+ 658: 'mitten',
660
+ 659: 'mixing bowl',
661
+ 660: 'mobile home, manufactured home',
662
+ 661: 'Model T',
663
+ 662: 'modem',
664
+ 663: 'monastery',
665
+ 664: 'monitor',
666
+ 665: 'moped',
667
+ 666: 'mortar',
668
+ 667: 'mortarboard',
669
+ 668: 'mosque',
670
+ 669: 'mosquito net',
671
+ 670: 'motor scooter, scooter',
672
+ 671: 'mountain bike, all-terrain bike, off-roader',
673
+ 672: 'mountain tent',
674
+ 673: 'mouse, computer mouse',
675
+ 674: 'mousetrap',
676
+ 675: 'moving van',
677
+ 676: 'muzzle',
678
+ 677: 'nail',
679
+ 678: 'neck brace',
680
+ 679: 'necklace',
681
+ 680: 'nipple',
682
+ 681: 'notebook, notebook computer',
683
+ 682: 'obelisk',
684
+ 683: 'oboe, hautboy, hautbois',
685
+ 684: 'ocarina, sweet potato',
686
+ 685: 'odometer, hodometer, mileometer, milometer',
687
+ 686: 'oil filter',
688
+ 687: 'organ, pipe organ',
689
+ 688: 'oscilloscope, scope, cathode-ray oscilloscope, CRO',
690
+ 689: 'overskirt',
691
+ 690: 'oxcart',
692
+ 691: 'oxygen mask',
693
+ 692: 'packet',
694
+ 693: 'paddle, boat paddle',
695
+ 694: 'paddlewheel, paddle wheel',
696
+ 695: 'padlock',
697
+ 696: 'paintbrush',
698
+ 697: "pajama, pyjama, pj's, jammies",
699
+ 698: 'palace',
700
+ 699: 'panpipe, pandean pipe, syrinx',
701
+ 700: 'paper towel',
702
+ 701: 'parachute, chute',
703
+ 702: 'parallel bars, bars',
704
+ 703: 'park bench',
705
+ 704: 'parking meter',
706
+ 705: 'passenger car, coach, carriage',
707
+ 706: 'patio, terrace',
708
+ 707: 'pay-phone, pay-station',
709
+ 708: 'pedestal, plinth, footstall',
710
+ 709: 'pencil box, pencil case',
711
+ 710: 'pencil sharpener',
712
+ 711: 'perfume, essence',
713
+ 712: 'Petri dish',
714
+ 713: 'photocopier',
715
+ 714: 'pick, plectrum, plectron',
716
+ 715: 'pickelhaube',
717
+ 716: 'picket fence, paling',
718
+ 717: 'pickup, pickup truck',
719
+ 718: 'pier',
720
+ 719: 'piggy bank, penny bank',
721
+ 720: 'pill bottle',
722
+ 721: 'pillow',
723
+ 722: 'ping-pong ball',
724
+ 723: 'pinwheel',
725
+ 724: 'pirate, pirate ship',
726
+ 725: 'pitcher, ewer',
727
+ 726: "plane, carpenter's plane, woodworking plane",
728
+ 727: 'planetarium',
729
+ 728: 'plastic bag',
730
+ 729: 'plate rack',
731
+ 730: 'plow, plough',
732
+ 731: "plunger, plumber's helper",
733
+ 732: 'Polaroid camera, Polaroid Land camera',
734
+ 733: 'pole',
735
+ 734: 'police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria',
736
+ 735: 'poncho',
737
+ 736: 'pool table, billiard table, snooker table',
738
+ 737: 'pop bottle, soda bottle',
739
+ 738: 'pot, flowerpot',
740
+ 739: "potter's wheel",
741
+ 740: 'power drill',
742
+ 741: 'prayer rug, prayer mat',
743
+ 742: 'printer',
744
+ 743: 'prison, prison house',
745
+ 744: 'projectile, missile',
746
+ 745: 'projector',
747
+ 746: 'puck, hockey puck',
748
+ 747: 'punching bag, punch bag, punching ball, punchball',
749
+ 748: 'purse',
750
+ 749: 'quill, quill pen',
751
+ 750: 'quilt, comforter, comfort, puff',
752
+ 751: 'racer, race car, racing car',
753
+ 752: 'racket, racquet',
754
+ 753: 'radiator',
755
+ 754: 'radio, wireless',
756
+ 755: 'radio telescope, radio reflector',
757
+ 756: 'rain barrel',
758
+ 757: 'recreational vehicle, RV, R.V.',
759
+ 758: 'reel',
760
+ 759: 'reflex camera',
761
+ 760: 'refrigerator, icebox',
762
+ 761: 'remote control, remote',
763
+ 762: 'restaurant, eating house, eating place, eatery',
764
+ 763: 'revolver, six-gun, six-shooter',
765
+ 764: 'rifle',
766
+ 765: 'rocking chair, rocker',
767
+ 766: 'rotisserie',
768
+ 767: 'rubber eraser, rubber, pencil eraser',
769
+ 768: 'rugby ball',
770
+ 769: 'rule, ruler',
771
+ 770: 'running shoe',
772
+ 771: 'safe',
773
+ 772: 'safety pin',
774
+ 773: 'saltshaker, salt shaker',
775
+ 774: 'sandal',
776
+ 775: 'sarong',
777
+ 776: 'sax, saxophone',
778
+ 777: 'scabbard',
779
+ 778: 'scale, weighing machine',
780
+ 779: 'school bus',
781
+ 780: 'schooner',
782
+ 781: 'scoreboard',
783
+ 782: 'screen, CRT screen',
784
+ 783: 'screw',
785
+ 784: 'screwdriver',
786
+ 785: 'seat belt, seatbelt',
787
+ 786: 'sewing machine',
788
+ 787: 'shield, buckler',
789
+ 788: 'shoe shop, shoe-shop, shoe store',
790
+ 789: 'shoji',
791
+ 790: 'shopping basket',
792
+ 791: 'shopping cart',
793
+ 792: 'shovel',
794
+ 793: 'shower cap',
795
+ 794: 'shower curtain',
796
+ 795: 'ski',
797
+ 796: 'ski mask',
798
+ 797: 'sleeping bag',
799
+ 798: 'slide rule, slipstick',
800
+ 799: 'sliding door',
801
+ 800: 'slot, one-armed bandit',
802
+ 801: 'snorkel',
803
+ 802: 'snowmobile',
804
+ 803: 'snowplow, snowplough',
805
+ 804: 'soap dispenser',
806
+ 805: 'soccer ball',
807
+ 806: 'sock',
808
+ 807: 'solar dish, solar collector, solar furnace',
809
+ 808: 'sombrero',
810
+ 809: 'soup bowl',
811
+ 810: 'space bar',
812
+ 811: 'space heater',
813
+ 812: 'space shuttle',
814
+ 813: 'spatula',
815
+ 814: 'speedboat',
816
+ 815: "spider web, spider's web",
817
+ 816: 'spindle',
818
+ 817: 'sports car, sport car',
819
+ 818: 'spotlight, spot',
820
+ 819: 'stage',
821
+ 820: 'steam locomotive',
822
+ 821: 'steel arch bridge',
823
+ 822: 'steel drum',
824
+ 823: 'stethoscope',
825
+ 824: 'stole',
826
+ 825: 'stone wall',
827
+ 826: 'stopwatch, stop watch',
828
+ 827: 'stove',
829
+ 828: 'strainer',
830
+ 829: 'streetcar, tram, tramcar, trolley, trolley car',
831
+ 830: 'stretcher',
832
+ 831: 'studio couch, day bed',
833
+ 832: 'stupa, tope',
834
+ 833: 'submarine, pigboat, sub, U-boat',
835
+ 834: 'suit, suit of clothes',
836
+ 835: 'sundial',
837
+ 836: 'sunglass',
838
+ 837: 'sunglasses, dark glasses, shades',
839
+ 838: 'sunscreen, sunblock, sun blocker',
840
+ 839: 'suspension bridge',
841
+ 840: 'swab, swob, mop',
842
+ 841: 'sweatshirt',
843
+ 842: 'swimming trunks, bathing trunks',
844
+ 843: 'swing',
845
+ 844: 'switch, electric switch, electrical switch',
846
+ 845: 'syringe',
847
+ 846: 'table lamp',
848
+ 847: 'tank, army tank, armored combat vehicle, armoured combat vehicle',
849
+ 848: 'tape player',
850
+ 849: 'teapot',
851
+ 850: 'teddy, teddy bear',
852
+ 851: 'television, television system',
853
+ 852: 'tennis ball',
854
+ 853: 'thatch, thatched roof',
855
+ 854: 'theater curtain, theatre curtain',
856
+ 855: 'thimble',
857
+ 856: 'thresher, thrasher, threshing machine',
858
+ 857: 'throne',
859
+ 858: 'tile roof',
860
+ 859: 'toaster',
861
+ 860: 'tobacco shop, tobacconist shop, tobacconist',
862
+ 861: 'toilet seat',
863
+ 862: 'torch',
864
+ 863: 'totem pole',
865
+ 864: 'tow truck, tow car, wrecker',
866
+ 865: 'toyshop',
867
+ 866: 'tractor',
868
+ 867: 'trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi',
869
+ 868: 'tray',
870
+ 869: 'trench coat',
871
+ 870: 'tricycle, trike, velocipede',
872
+ 871: 'trimaran',
873
+ 872: 'tripod',
874
+ 873: 'triumphal arch',
875
+ 874: 'trolleybus, trolley coach, trackless trolley',
876
+ 875: 'trombone',
877
+ 876: 'tub, vat',
878
+ 877: 'turnstile',
879
+ 878: 'typewriter keyboard',
880
+ 879: 'umbrella',
881
+ 880: 'unicycle, monocycle',
882
+ 881: 'upright, upright piano',
883
+ 882: 'vacuum, vacuum cleaner',
884
+ 883: 'vase',
885
+ 884: 'vault',
886
+ 885: 'velvet',
887
+ 886: 'vending machine',
888
+ 887: 'vestment',
889
+ 888: 'viaduct',
890
+ 889: 'violin, fiddle',
891
+ 890: 'volleyball',
892
+ 891: 'waffle iron',
893
+ 892: 'wall clock',
894
+ 893: 'wallet, billfold, notecase, pocketbook',
895
+ 894: 'wardrobe, closet, press',
896
+ 895: 'warplane, military plane',
897
+ 896: 'washbasin, handbasin, washbowl, lavabo, wash-hand basin',
898
+ 897: 'washer, automatic washer, washing machine',
899
+ 898: 'water bottle',
900
+ 899: 'water jug',
901
+ 900: 'water tower',
902
+ 901: 'whiskey jug',
903
+ 902: 'whistle',
904
+ 903: 'wig',
905
+ 904: 'window screen',
906
+ 905: 'window shade',
907
+ 906: 'Windsor tie',
908
+ 907: 'wine bottle',
909
+ 908: 'wing',
910
+ 909: 'wok',
911
+ 910: 'wooden spoon',
912
+ 911: 'wool, woolen, woollen',
913
+ 912: 'worm fence, snake fence, snake-rail fence, Virginia fence',
914
+ 913: 'wreck',
915
+ 914: 'yawl',
916
+ 915: 'yurt',
917
+ 916: 'web site, website, internet site, site',
918
+ 917: 'comic book',
919
+ 918: 'crossword puzzle, crossword',
920
+ 919: 'street sign',
921
+ 920: 'traffic light, traffic signal, stoplight',
922
+ 921: 'book jacket, dust cover, dust jacket, dust wrapper',
923
+ 922: 'menu',
924
+ 923: 'plate',
925
+ 924: 'guacamole',
926
+ 925: 'consomme',
927
+ 926: 'hot pot, hotpot',
928
+ 927: 'trifle',
929
+ 928: 'ice cream, icecream',
930
+ 929: 'ice lolly, lolly, lollipop, popsicle',
931
+ 930: 'French loaf',
932
+ 931: 'bagel, beigel',
933
+ 932: 'pretzel',
934
+ 933: 'cheeseburger',
935
+ 934: 'hotdog, hot dog, red hot',
936
+ 935: 'mashed potato',
937
+ 936: 'head cabbage',
938
+ 937: 'broccoli',
939
+ 938: 'cauliflower',
940
+ 939: 'zucchini, courgette',
941
+ 940: 'spaghetti squash',
942
+ 941: 'acorn squash',
943
+ 942: 'butternut squash',
944
+ 943: 'cucumber, cuke',
945
+ 944: 'artichoke, globe artichoke',
946
+ 945: 'bell pepper',
947
+ 946: 'cardoon',
948
+ 947: 'mushroom',
949
+ 948: 'Granny Smith',
950
+ 949: 'strawberry',
951
+ 950: 'orange',
952
+ 951: 'lemon',
953
+ 952: 'fig',
954
+ 953: 'pineapple, ananas',
955
+ 954: 'banana',
956
+ 955: 'jackfruit, jak, jack',
957
+ 956: 'custard apple',
958
+ 957: 'pomegranate',
959
+ 958: 'hay',
960
+ 959: 'carbonara',
961
+ 960: 'chocolate sauce, chocolate syrup',
962
+ 961: 'dough',
963
+ 962: 'meat loaf, meatloaf',
964
+ 963: 'pizza, pizza pie',
965
+ 964: 'potpie',
966
+ 965: 'burrito',
967
+ 966: 'red wine',
968
+ 967: 'espresso',
969
+ 968: 'cup',
970
+ 969: 'eggnog',
971
+ 970: 'alp',
972
+ 971: 'bubble',
973
+ 972: 'cliff, drop, drop-off',
974
+ 973: 'coral reef',
975
+ 974: 'geyser',
976
+ 975: 'lakeside, lakeshore',
977
+ 976: 'promontory, headland, head, foreland',
978
+ 977: 'sandbar, sand bar',
979
+ 978: 'seashore, coast, seacoast, sea-coast',
980
+ 979: 'valley, vale',
981
+ 980: 'volcano',
982
+ 981: 'ballplayer, baseball player',
983
+ 982: 'groom, bridegroom',
984
+ 983: 'scuba diver',
985
+ 984: 'rapeseed',
986
+ 985: 'daisy',
987
+ 986: "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
988
+ 987: 'corn',
989
+ 988: 'acorn',
990
+ 989: 'hip, rose hip, rosehip',
991
+ 990: 'buckeye, horse chestnut, conker',
992
+ 991: 'coral fungus',
993
+ 992: 'agaric',
994
+ 993: 'gyromitra',
995
+ 994: 'stinkhorn, carrion fungus',
996
+ 995: 'earthstar',
997
+ 996: 'hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa',
998
+ 997: 'bolete',
999
+ 998: 'ear, spike, capitulum',
1000
+ 999: 'toilet tissue, toilet paper, bathroom tissue'
gligen/ldm/data/imagenet_train_hr_indices.p ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9116decb10fae4d546892a551bf71865423b48ffccda61a38e52c59ad8d49d67
3
+ size 5641045
gligen/ldm/data/imagenet_val_hr_indices.p ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:caff671e3af805b4cead728b20b7c44c3cc366ed14b291c0270a2b2de39a4025
3
+ size 145756
gligen/ldm/data/index_synset.yaml ADDED
@@ -0,0 +1,1000 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 0: n01440764
2
+ 1: n01443537
3
+ 2: n01484850
4
+ 3: n01491361
5
+ 4: n01494475
6
+ 5: n01496331
7
+ 6: n01498041
8
+ 7: n01514668
9
+ 8: n07646067
10
+ 9: n01518878
11
+ 10: n01530575
12
+ 11: n01531178
13
+ 12: n01532829
14
+ 13: n01534433
15
+ 14: n01537544
16
+ 15: n01558993
17
+ 16: n01560419
18
+ 17: n01580077
19
+ 18: n01582220
20
+ 19: n01592084
21
+ 20: n01601694
22
+ 21: n13382471
23
+ 22: n01614925
24
+ 23: n01616318
25
+ 24: n01622779
26
+ 25: n01629819
27
+ 26: n01630670
28
+ 27: n01631663
29
+ 28: n01632458
30
+ 29: n01632777
31
+ 30: n01641577
32
+ 31: n01644373
33
+ 32: n01644900
34
+ 33: n01664065
35
+ 34: n01665541
36
+ 35: n01667114
37
+ 36: n01667778
38
+ 37: n01669191
39
+ 38: n01675722
40
+ 39: n01677366
41
+ 40: n01682714
42
+ 41: n01685808
43
+ 42: n01687978
44
+ 43: n01688243
45
+ 44: n01689811
46
+ 45: n01692333
47
+ 46: n01693334
48
+ 47: n01694178
49
+ 48: n01695060
50
+ 49: n01697457
51
+ 50: n01698640
52
+ 51: n01704323
53
+ 52: n01728572
54
+ 53: n01728920
55
+ 54: n01729322
56
+ 55: n01729977
57
+ 56: n01734418
58
+ 57: n01735189
59
+ 58: n01737021
60
+ 59: n01739381
61
+ 60: n01740131
62
+ 61: n01742172
63
+ 62: n01744401
64
+ 63: n01748264
65
+ 64: n01749939
66
+ 65: n01751748
67
+ 66: n01753488
68
+ 67: n01755581
69
+ 68: n01756291
70
+ 69: n01768244
71
+ 70: n01770081
72
+ 71: n01770393
73
+ 72: n01773157
74
+ 73: n01773549
75
+ 74: n01773797
76
+ 75: n01774384
77
+ 76: n01774750
78
+ 77: n01775062
79
+ 78: n04432308
80
+ 79: n01784675
81
+ 80: n01795545
82
+ 81: n01796340
83
+ 82: n01797886
84
+ 83: n01798484
85
+ 84: n01806143
86
+ 85: n07647321
87
+ 86: n07647496
88
+ 87: n01817953
89
+ 88: n01818515
90
+ 89: n01819313
91
+ 90: n01820546
92
+ 91: n01824575
93
+ 92: n01828970
94
+ 93: n01829413
95
+ 94: n01833805
96
+ 95: n01843065
97
+ 96: n01843383
98
+ 97: n01847000
99
+ 98: n01855032
100
+ 99: n07646821
101
+ 100: n01860187
102
+ 101: n01871265
103
+ 102: n01872772
104
+ 103: n01873310
105
+ 104: n01877812
106
+ 105: n01882714
107
+ 106: n01883070
108
+ 107: n01910747
109
+ 108: n01914609
110
+ 109: n01917289
111
+ 110: n01924916
112
+ 111: n01930112
113
+ 112: n01943899
114
+ 113: n01944390
115
+ 114: n13719102
116
+ 115: n01950731
117
+ 116: n01955084
118
+ 117: n01968897
119
+ 118: n01978287
120
+ 119: n01978455
121
+ 120: n01980166
122
+ 121: n01981276
123
+ 122: n01983481
124
+ 123: n01984695
125
+ 124: n01985128
126
+ 125: n01986214
127
+ 126: n01990800
128
+ 127: n02002556
129
+ 128: n02002724
130
+ 129: n02006656
131
+ 130: n02007558
132
+ 131: n02009229
133
+ 132: n02009912
134
+ 133: n02011460
135
+ 134: n03126707
136
+ 135: n02013706
137
+ 136: n02017213
138
+ 137: n02018207
139
+ 138: n02018795
140
+ 139: n02025239
141
+ 140: n02027492
142
+ 141: n02028035
143
+ 142: n02033041
144
+ 143: n02037110
145
+ 144: n02051845
146
+ 145: n02056570
147
+ 146: n02058221
148
+ 147: n02066245
149
+ 148: n02071294
150
+ 149: n02074367
151
+ 150: n02077923
152
+ 151: n08742578
153
+ 152: n02085782
154
+ 153: n02085936
155
+ 154: n02086079
156
+ 155: n02086240
157
+ 156: n02086646
158
+ 157: n02086910
159
+ 158: n02087046
160
+ 159: n02087394
161
+ 160: n02088094
162
+ 161: n02088238
163
+ 162: n02088364
164
+ 163: n02088466
165
+ 164: n02088632
166
+ 165: n02089078
167
+ 166: n02089867
168
+ 167: n02089973
169
+ 168: n02090379
170
+ 169: n02090622
171
+ 170: n02090721
172
+ 171: n02091032
173
+ 172: n02091134
174
+ 173: n02091244
175
+ 174: n02091467
176
+ 175: n02091635
177
+ 176: n02091831
178
+ 177: n02092002
179
+ 178: n02092339
180
+ 179: n02093256
181
+ 180: n02093428
182
+ 181: n02093647
183
+ 182: n02093754
184
+ 183: n02093859
185
+ 184: n02093991
186
+ 185: n02094114
187
+ 186: n02094258
188
+ 187: n02094433
189
+ 188: n02095314
190
+ 189: n02095570
191
+ 190: n02095889
192
+ 191: n02096051
193
+ 192: n02096177
194
+ 193: n02096294
195
+ 194: n02096437
196
+ 195: n02096585
197
+ 196: n02097047
198
+ 197: n02097130
199
+ 198: n02097209
200
+ 199: n02097298
201
+ 200: n02097474
202
+ 201: n02097658
203
+ 202: n02098105
204
+ 203: n02098286
205
+ 204: n02098413
206
+ 205: n02099267
207
+ 206: n02099429
208
+ 207: n02099601
209
+ 208: n02099712
210
+ 209: n02099849
211
+ 210: n02100236
212
+ 211: n02100583
213
+ 212: n02100735
214
+ 213: n02100877
215
+ 214: n02101006
216
+ 215: n02101388
217
+ 216: n02101556
218
+ 217: n02102040
219
+ 218: n02102177
220
+ 219: n02102318
221
+ 220: n02102480
222
+ 221: n02102973
223
+ 222: n02104029
224
+ 223: n02104365
225
+ 224: n02105056
226
+ 225: n02105162
227
+ 226: n02105251
228
+ 227: n02105412
229
+ 228: n02105505
230
+ 229: n02105641
231
+ 230: n02105855
232
+ 231: n02106030
233
+ 232: n02106166
234
+ 233: n02106382
235
+ 234: n02106550
236
+ 235: n02106662
237
+ 236: n02107142
238
+ 237: n02107312
239
+ 238: n02107574
240
+ 239: n02107683
241
+ 240: n02107908
242
+ 241: n02108000
243
+ 242: n02108089
244
+ 243: n02108422
245
+ 244: n02108551
246
+ 245: n02108915
247
+ 246: n02109047
248
+ 247: n02109525
249
+ 248: n02109961
250
+ 249: n02110063
251
+ 250: n02110185
252
+ 251: n02110341
253
+ 252: n02110627
254
+ 253: n02110806
255
+ 254: n02110958
256
+ 255: n02111129
257
+ 256: n02111277
258
+ 257: n02111500
259
+ 258: n02111889
260
+ 259: n02112018
261
+ 260: n02112137
262
+ 261: n02112350
263
+ 262: n02112706
264
+ 263: n02113023
265
+ 264: n02113186
266
+ 265: n02113624
267
+ 266: n02113712
268
+ 267: n02113799
269
+ 268: n02113978
270
+ 269: n02114367
271
+ 270: n02114548
272
+ 271: n02114712
273
+ 272: n02114855
274
+ 273: n02115641
275
+ 274: n02115913
276
+ 275: n02116738
277
+ 276: n02117135
278
+ 277: n02119022
279
+ 278: n02119789
280
+ 279: n02120079
281
+ 280: n02120505
282
+ 281: n02123045
283
+ 282: n02123159
284
+ 283: n02123394
285
+ 284: n02123597
286
+ 285: n02124075
287
+ 286: n02125311
288
+ 287: n02127052
289
+ 288: n02128385
290
+ 289: n02128757
291
+ 290: n02128925
292
+ 291: n02129165
293
+ 292: n02129604
294
+ 293: n02130308
295
+ 294: n02132136
296
+ 295: n02133161
297
+ 296: n02134084
298
+ 297: n02134418
299
+ 298: n02137549
300
+ 299: n02138441
301
+ 300: n02165105
302
+ 301: n02165456
303
+ 302: n02167151
304
+ 303: n02168699
305
+ 304: n02169497
306
+ 305: n02172182
307
+ 306: n02174001
308
+ 307: n02177972
309
+ 308: n03373237
310
+ 309: n07975909
311
+ 310: n02219486
312
+ 311: n02226429
313
+ 312: n02229544
314
+ 313: n02231487
315
+ 314: n02233338
316
+ 315: n02236044
317
+ 316: n02256656
318
+ 317: n02259212
319
+ 318: n02264363
320
+ 319: n02268443
321
+ 320: n02268853
322
+ 321: n02276258
323
+ 322: n02277742
324
+ 323: n02279972
325
+ 324: n02280649
326
+ 325: n02281406
327
+ 326: n02281787
328
+ 327: n02317335
329
+ 328: n02319095
330
+ 329: n02321529
331
+ 330: n02325366
332
+ 331: n02326432
333
+ 332: n02328150
334
+ 333: n02342885
335
+ 334: n02346627
336
+ 335: n02356798
337
+ 336: n02361337
338
+ 337: n05262120
339
+ 338: n02364673
340
+ 339: n02389026
341
+ 340: n02391049
342
+ 341: n02395406
343
+ 342: n02396427
344
+ 343: n02397096
345
+ 344: n02398521
346
+ 345: n02403003
347
+ 346: n02408429
348
+ 347: n02410509
349
+ 348: n02412080
350
+ 349: n02415577
351
+ 350: n02417914
352
+ 351: n02422106
353
+ 352: n02422699
354
+ 353: n02423022
355
+ 354: n02437312
356
+ 355: n02437616
357
+ 356: n10771990
358
+ 357: n14765497
359
+ 358: n02443114
360
+ 359: n02443484
361
+ 360: n14765785
362
+ 361: n02445715
363
+ 362: n02447366
364
+ 363: n02454379
365
+ 364: n02457408
366
+ 365: n02480495
367
+ 366: n02480855
368
+ 367: n02481823
369
+ 368: n02483362
370
+ 369: n02483708
371
+ 370: n02484975
372
+ 371: n02486261
373
+ 372: n02486410
374
+ 373: n02487347
375
+ 374: n02488291
376
+ 375: n02488702
377
+ 376: n02489166
378
+ 377: n02490219
379
+ 378: n02492035
380
+ 379: n02492660
381
+ 380: n02493509
382
+ 381: n02493793
383
+ 382: n02494079
384
+ 383: n02497673
385
+ 384: n02500267
386
+ 385: n02504013
387
+ 386: n02504458
388
+ 387: n02509815
389
+ 388: n02510455
390
+ 389: n02514041
391
+ 390: n07783967
392
+ 391: n02536864
393
+ 392: n02606052
394
+ 393: n02607072
395
+ 394: n02640242
396
+ 395: n02641379
397
+ 396: n02643566
398
+ 397: n02655020
399
+ 398: n02666347
400
+ 399: n02667093
401
+ 400: n02669723
402
+ 401: n02672831
403
+ 402: n02676566
404
+ 403: n02687172
405
+ 404: n02690373
406
+ 405: n02692877
407
+ 406: n02699494
408
+ 407: n02701002
409
+ 408: n02704792
410
+ 409: n02708093
411
+ 410: n02727426
412
+ 411: n08496334
413
+ 412: n02747177
414
+ 413: n02749479
415
+ 414: n02769748
416
+ 415: n02776631
417
+ 416: n02777292
418
+ 417: n02782329
419
+ 418: n02783161
420
+ 419: n02786058
421
+ 420: n02787622
422
+ 421: n02788148
423
+ 422: n02790996
424
+ 423: n02791124
425
+ 424: n02791270
426
+ 425: n02793495
427
+ 426: n02794156
428
+ 427: n02795169
429
+ 428: n02797295
430
+ 429: n02799071
431
+ 430: n02802426
432
+ 431: n02804515
433
+ 432: n02804610
434
+ 433: n02807133
435
+ 434: n02808304
436
+ 435: n02808440
437
+ 436: n02814533
438
+ 437: n02814860
439
+ 438: n02815834
440
+ 439: n02817516
441
+ 440: n02823428
442
+ 441: n02823750
443
+ 442: n02825657
444
+ 443: n02834397
445
+ 444: n02835271
446
+ 445: n02837789
447
+ 446: n02840245
448
+ 447: n02841315
449
+ 448: n02843684
450
+ 449: n02859443
451
+ 450: n02860847
452
+ 451: n02865351
453
+ 452: n02869837
454
+ 453: n02870880
455
+ 454: n02871525
456
+ 455: n02877765
457
+ 456: n02880308
458
+ 457: n02883205
459
+ 458: n02892201
460
+ 459: n02892767
461
+ 460: n02894605
462
+ 461: n02895154
463
+ 462: n12520864
464
+ 463: n02909870
465
+ 464: n02910353
466
+ 465: n02916936
467
+ 466: n02917067
468
+ 467: n02927161
469
+ 468: n02930766
470
+ 469: n02939185
471
+ 470: n02948072
472
+ 471: n02950826
473
+ 472: n02951358
474
+ 473: n02951585
475
+ 474: n02963159
476
+ 475: n02965783
477
+ 476: n02966193
478
+ 477: n02966687
479
+ 478: n02971356
480
+ 479: n02974003
481
+ 480: n02977058
482
+ 481: n02978881
483
+ 482: n02979186
484
+ 483: n02980441
485
+ 484: n02981792
486
+ 485: n02988304
487
+ 486: n02992211
488
+ 487: n02992529
489
+ 488: n13652994
490
+ 489: n03000134
491
+ 490: n03000247
492
+ 491: n03000684
493
+ 492: n03014705
494
+ 493: n03016953
495
+ 494: n03017168
496
+ 495: n03018349
497
+ 496: n03026506
498
+ 497: n03028079
499
+ 498: n03032252
500
+ 499: n03041632
501
+ 500: n03042490
502
+ 501: n03045698
503
+ 502: n03047690
504
+ 503: n03062245
505
+ 504: n03063599
506
+ 505: n03063689
507
+ 506: n03065424
508
+ 507: n03075370
509
+ 508: n03085013
510
+ 509: n03089624
511
+ 510: n03095699
512
+ 511: n03100240
513
+ 512: n03109150
514
+ 513: n03110669
515
+ 514: n03124043
516
+ 515: n03124170
517
+ 516: n15142452
518
+ 517: n03126707
519
+ 518: n03127747
520
+ 519: n03127925
521
+ 520: n03131574
522
+ 521: n03133878
523
+ 522: n03134739
524
+ 523: n03141823
525
+ 524: n03146219
526
+ 525: n03160309
527
+ 526: n03179701
528
+ 527: n03180011
529
+ 528: n03187595
530
+ 529: n03188531
531
+ 530: n03196217
532
+ 531: n03197337
533
+ 532: n03201208
534
+ 533: n03207743
535
+ 534: n03207941
536
+ 535: n03208938
537
+ 536: n03216828
538
+ 537: n03218198
539
+ 538: n13872072
540
+ 539: n03223299
541
+ 540: n03240683
542
+ 541: n03249569
543
+ 542: n07647870
544
+ 543: n03255030
545
+ 544: n03259401
546
+ 545: n03271574
547
+ 546: n03272010
548
+ 547: n03272562
549
+ 548: n03290653
550
+ 549: n13869788
551
+ 550: n03297495
552
+ 551: n03314780
553
+ 552: n03325584
554
+ 553: n03337140
555
+ 554: n03344393
556
+ 555: n03345487
557
+ 556: n03347037
558
+ 557: n03355925
559
+ 558: n03372029
560
+ 559: n03376595
561
+ 560: n03379051
562
+ 561: n03384352
563
+ 562: n03388043
564
+ 563: n03388183
565
+ 564: n03388549
566
+ 565: n03393912
567
+ 566: n03394916
568
+ 567: n03400231
569
+ 568: n03404251
570
+ 569: n03417042
571
+ 570: n03424325
572
+ 571: n03425413
573
+ 572: n03443371
574
+ 573: n03444034
575
+ 574: n03445777
576
+ 575: n03445924
577
+ 576: n03447447
578
+ 577: n03447721
579
+ 578: n08286342
580
+ 579: n03452741
581
+ 580: n03457902
582
+ 581: n03459775
583
+ 582: n03461385
584
+ 583: n03467068
585
+ 584: n03476684
586
+ 585: n03476991
587
+ 586: n03478589
588
+ 587: n03482001
589
+ 588: n03482405
590
+ 589: n03483316
591
+ 590: n03485407
592
+ 591: n03485794
593
+ 592: n03492542
594
+ 593: n03494278
595
+ 594: n03495570
596
+ 595: n10161363
597
+ 596: n03498962
598
+ 597: n03527565
599
+ 598: n03529860
600
+ 599: n09218315
601
+ 600: n03532672
602
+ 601: n03534580
603
+ 602: n03535780
604
+ 603: n03538406
605
+ 604: n03544143
606
+ 605: n03584254
607
+ 606: n03584829
608
+ 607: n03590841
609
+ 608: n03594734
610
+ 609: n03594945
611
+ 610: n03595614
612
+ 611: n03598930
613
+ 612: n03599486
614
+ 613: n03602883
615
+ 614: n03617480
616
+ 615: n03623198
617
+ 616: n15102712
618
+ 617: n03630383
619
+ 618: n03633091
620
+ 619: n03637318
621
+ 620: n03642806
622
+ 621: n03649909
623
+ 622: n03657121
624
+ 623: n03658185
625
+ 624: n07977870
626
+ 625: n03662601
627
+ 626: n03666591
628
+ 627: n03670208
629
+ 628: n03673027
630
+ 629: n03676483
631
+ 630: n03680355
632
+ 631: n03690938
633
+ 632: n03691459
634
+ 633: n03692522
635
+ 634: n03697007
636
+ 635: n03706229
637
+ 636: n03709823
638
+ 637: n03710193
639
+ 638: n03710637
640
+ 639: n03710721
641
+ 640: n03717622
642
+ 641: n03720891
643
+ 642: n03721384
644
+ 643: n03725035
645
+ 644: n03729826
646
+ 645: n03733131
647
+ 646: n03733281
648
+ 647: n03733805
649
+ 648: n03742115
650
+ 649: n03743016
651
+ 650: n03759954
652
+ 651: n03761084
653
+ 652: n03763968
654
+ 653: n03764736
655
+ 654: n03769881
656
+ 655: n03770439
657
+ 656: n03770679
658
+ 657: n03773504
659
+ 658: n03775071
660
+ 659: n03775546
661
+ 660: n03776460
662
+ 661: n03777568
663
+ 662: n03777754
664
+ 663: n03781244
665
+ 664: n03782006
666
+ 665: n03785016
667
+ 666: n14955889
668
+ 667: n03787032
669
+ 668: n03788195
670
+ 669: n03788365
671
+ 670: n03791053
672
+ 671: n03792782
673
+ 672: n03792972
674
+ 673: n03793489
675
+ 674: n03794056
676
+ 675: n03796401
677
+ 676: n03803284
678
+ 677: n13652335
679
+ 678: n03814639
680
+ 679: n03814906
681
+ 680: n03825788
682
+ 681: n03832673
683
+ 682: n03837869
684
+ 683: n03838899
685
+ 684: n03840681
686
+ 685: n03841143
687
+ 686: n03843555
688
+ 687: n03854065
689
+ 688: n03857828
690
+ 689: n03866082
691
+ 690: n03868242
692
+ 691: n03868863
693
+ 692: n07281099
694
+ 693: n03873416
695
+ 694: n03874293
696
+ 695: n03874599
697
+ 696: n03876231
698
+ 697: n03877472
699
+ 698: n08053121
700
+ 699: n03884397
701
+ 700: n03887697
702
+ 701: n03888257
703
+ 702: n03888605
704
+ 703: n03891251
705
+ 704: n03891332
706
+ 705: n03895866
707
+ 706: n03899768
708
+ 707: n03902125
709
+ 708: n03903868
710
+ 709: n03908618
711
+ 710: n03908714
712
+ 711: n03916031
713
+ 712: n03920288
714
+ 713: n03924679
715
+ 714: n03929660
716
+ 715: n03929855
717
+ 716: n03930313
718
+ 717: n03930630
719
+ 718: n03934042
720
+ 719: n03935335
721
+ 720: n03937543
722
+ 721: n03938244
723
+ 722: n03942813
724
+ 723: n03944341
725
+ 724: n03947888
726
+ 725: n03950228
727
+ 726: n03954731
728
+ 727: n03956157
729
+ 728: n03958227
730
+ 729: n03961711
731
+ 730: n03967562
732
+ 731: n03970156
733
+ 732: n03976467
734
+ 733: n08620881
735
+ 734: n03977966
736
+ 735: n03980874
737
+ 736: n03982430
738
+ 737: n03983396
739
+ 738: n03991062
740
+ 739: n03992509
741
+ 740: n03995372
742
+ 741: n03998194
743
+ 742: n04004767
744
+ 743: n13937284
745
+ 744: n04008634
746
+ 745: n04009801
747
+ 746: n04019541
748
+ 747: n04023962
749
+ 748: n13413294
750
+ 749: n04033901
751
+ 750: n04033995
752
+ 751: n04037443
753
+ 752: n04039381
754
+ 753: n09403211
755
+ 754: n04041544
756
+ 755: n04044716
757
+ 756: n04049303
758
+ 757: n04065272
759
+ 758: n07056680
760
+ 759: n04069434
761
+ 760: n04070727
762
+ 761: n04074963
763
+ 762: n04081281
764
+ 763: n04086273
765
+ 764: n04090263
766
+ 765: n04099969
767
+ 766: n04111531
768
+ 767: n04116512
769
+ 768: n04118538
770
+ 769: n04118776
771
+ 770: n04120489
772
+ 771: n04125116
773
+ 772: n04127249
774
+ 773: n04131690
775
+ 774: n04133789
776
+ 775: n04136333
777
+ 776: n04141076
778
+ 777: n04141327
779
+ 778: n04141975
780
+ 779: n04146614
781
+ 780: n04147291
782
+ 781: n04149813
783
+ 782: n04152593
784
+ 783: n04154340
785
+ 784: n07917272
786
+ 785: n04162706
787
+ 786: n04179913
788
+ 787: n04192698
789
+ 788: n04200800
790
+ 789: n04201297
791
+ 790: n04204238
792
+ 791: n04204347
793
+ 792: n04208427
794
+ 793: n04209133
795
+ 794: n04209239
796
+ 795: n04228054
797
+ 796: n04229816
798
+ 797: n04235860
799
+ 798: n04238763
800
+ 799: n04239074
801
+ 800: n04243546
802
+ 801: n04251144
803
+ 802: n04252077
804
+ 803: n04252225
805
+ 804: n04254120
806
+ 805: n04254680
807
+ 806: n04254777
808
+ 807: n04258138
809
+ 808: n04259630
810
+ 809: n04263257
811
+ 810: n04264628
812
+ 811: n04265275
813
+ 812: n04266014
814
+ 813: n04270147
815
+ 814: n04273569
816
+ 815: n04275363
817
+ 816: n05605498
818
+ 817: n04285008
819
+ 818: n04286575
820
+ 819: n08646566
821
+ 820: n04310018
822
+ 821: n04311004
823
+ 822: n04311174
824
+ 823: n04317175
825
+ 824: n04325704
826
+ 825: n04326547
827
+ 826: n04328186
828
+ 827: n04330267
829
+ 828: n04332243
830
+ 829: n04335435
831
+ 830: n04337157
832
+ 831: n04344873
833
+ 832: n04346328
834
+ 833: n04347754
835
+ 834: n04350905
836
+ 835: n04355338
837
+ 836: n04355933
838
+ 837: n04356056
839
+ 838: n04357314
840
+ 839: n04366367
841
+ 840: n04367480
842
+ 841: n04370456
843
+ 842: n04371430
844
+ 843: n14009946
845
+ 844: n04372370
846
+ 845: n04376876
847
+ 846: n04380533
848
+ 847: n04389033
849
+ 848: n04392985
850
+ 849: n04398044
851
+ 850: n04399382
852
+ 851: n04404412
853
+ 852: n04409515
854
+ 853: n04417672
855
+ 854: n04418357
856
+ 855: n04423845
857
+ 856: n04428191
858
+ 857: n04429376
859
+ 858: n04435653
860
+ 859: n04442312
861
+ 860: n04443257
862
+ 861: n04447861
863
+ 862: n04456115
864
+ 863: n04458633
865
+ 864: n04461696
866
+ 865: n04462240
867
+ 866: n04465666
868
+ 867: n04467665
869
+ 868: n04476259
870
+ 869: n04479046
871
+ 870: n04482393
872
+ 871: n04483307
873
+ 872: n04485082
874
+ 873: n04486054
875
+ 874: n04487081
876
+ 875: n04487394
877
+ 876: n04493381
878
+ 877: n04501370
879
+ 878: n04505470
880
+ 879: n04507155
881
+ 880: n04509417
882
+ 881: n04515003
883
+ 882: n04517823
884
+ 883: n04522168
885
+ 884: n04523525
886
+ 885: n04525038
887
+ 886: n04525305
888
+ 887: n04532106
889
+ 888: n04532670
890
+ 889: n04536866
891
+ 890: n04540053
892
+ 891: n04542943
893
+ 892: n04548280
894
+ 893: n04548362
895
+ 894: n04550184
896
+ 895: n04552348
897
+ 896: n04553703
898
+ 897: n04554684
899
+ 898: n04557648
900
+ 899: n04560804
901
+ 900: n04562935
902
+ 901: n04579145
903
+ 902: n04579667
904
+ 903: n04584207
905
+ 904: n04589890
906
+ 905: n04590129
907
+ 906: n04591157
908
+ 907: n04591713
909
+ 908: n10782135
910
+ 909: n04596742
911
+ 910: n04598010
912
+ 911: n04599235
913
+ 912: n04604644
914
+ 913: n14423870
915
+ 914: n04612504
916
+ 915: n04613696
917
+ 916: n06359193
918
+ 917: n06596364
919
+ 918: n06785654
920
+ 919: n06794110
921
+ 920: n06874185
922
+ 921: n07248320
923
+ 922: n07565083
924
+ 923: n07657664
925
+ 924: n07583066
926
+ 925: n07584110
927
+ 926: n07590611
928
+ 927: n07613480
929
+ 928: n07614500
930
+ 929: n07615774
931
+ 930: n07684084
932
+ 931: n07693725
933
+ 932: n07695742
934
+ 933: n07697313
935
+ 934: n07697537
936
+ 935: n07711569
937
+ 936: n07714571
938
+ 937: n07714990
939
+ 938: n07715103
940
+ 939: n12159804
941
+ 940: n12160303
942
+ 941: n12160857
943
+ 942: n07717556
944
+ 943: n07718472
945
+ 944: n07718747
946
+ 945: n07720875
947
+ 946: n07730033
948
+ 947: n13001041
949
+ 948: n07742313
950
+ 949: n12630144
951
+ 950: n14991210
952
+ 951: n07749582
953
+ 952: n07753113
954
+ 953: n07753275
955
+ 954: n07753592
956
+ 955: n07754684
957
+ 956: n07760859
958
+ 957: n07768694
959
+ 958: n07802026
960
+ 959: n07831146
961
+ 960: n07836838
962
+ 961: n07860988
963
+ 962: n07871810
964
+ 963: n07873807
965
+ 964: n07875152
966
+ 965: n07880968
967
+ 966: n07892512
968
+ 967: n07920052
969
+ 968: n13904665
970
+ 969: n07932039
971
+ 970: n09193705
972
+ 971: n09229709
973
+ 972: n09246464
974
+ 973: n09256479
975
+ 974: n09288635
976
+ 975: n09332890
977
+ 976: n09399592
978
+ 977: n09421951
979
+ 978: n09428293
980
+ 979: n09468604
981
+ 980: n09472597
982
+ 981: n09835506
983
+ 982: n10148035
984
+ 983: n10565667
985
+ 984: n11879895
986
+ 985: n11939491
987
+ 986: n12057211
988
+ 987: n12144580
989
+ 988: n12267677
990
+ 989: n12620546
991
+ 990: n12768682
992
+ 991: n12985857
993
+ 992: n12998815
994
+ 993: n13037406
995
+ 994: n13040303
996
+ 995: n13044778
997
+ 996: n13052670
998
+ 997: n13054560
999
+ 998: n13133613
1000
+ 999: n15075141
gligen/ldm/data/lsun.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import PIL
4
+ from PIL import Image
5
+ from torch.utils.data import Dataset
6
+ from torchvision import transforms
7
+
8
+
9
+ class LSUNBase(Dataset):
10
+ def __init__(self,
11
+ txt_file,
12
+ data_root,
13
+ size=None,
14
+ interpolation="bicubic",
15
+ flip_p=0.5
16
+ ):
17
+ self.data_paths = txt_file
18
+ self.data_root = data_root
19
+ with open(self.data_paths, "r") as f:
20
+ self.image_paths = f.read().splitlines()
21
+ self._length = len(self.image_paths)
22
+ self.labels = {
23
+ "relative_file_path_": [l for l in self.image_paths],
24
+ "file_path_": [os.path.join(self.data_root, l)
25
+ for l in self.image_paths],
26
+ }
27
+
28
+ self.size = size
29
+ self.interpolation = {"linear": PIL.Image.LINEAR,
30
+ "bilinear": PIL.Image.BILINEAR,
31
+ "bicubic": PIL.Image.BICUBIC,
32
+ "lanczos": PIL.Image.LANCZOS,
33
+ }[interpolation]
34
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
35
+
36
+ def __len__(self):
37
+ return self._length
38
+
39
+ def __getitem__(self, i):
40
+ example = dict((k, self.labels[k][i]) for k in self.labels)
41
+ image = Image.open(example["file_path_"])
42
+ if not image.mode == "RGB":
43
+ image = image.convert("RGB")
44
+
45
+ # default to score-sde preprocessing
46
+ img = np.array(image).astype(np.uint8)
47
+ crop = min(img.shape[0], img.shape[1])
48
+ h, w, = img.shape[0], img.shape[1]
49
+ img = img[(h - crop) // 2:(h + crop) // 2,
50
+ (w - crop) // 2:(w + crop) // 2]
51
+
52
+ image = Image.fromarray(img)
53
+ if self.size is not None:
54
+ image = image.resize((self.size, self.size), resample=self.interpolation)
55
+
56
+ image = self.flip(image)
57
+ image = np.array(image).astype(np.uint8)
58
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
59
+ return example
60
+
61
+
62
+ class LSUNChurchesTrain(LSUNBase):
63
+ def __init__(self, **kwargs):
64
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
65
+
66
+
67
+ class LSUNChurchesValidation(LSUNBase):
68
+ def __init__(self, flip_p=0., **kwargs):
69
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
70
+ flip_p=flip_p, **kwargs)
71
+
72
+
73
+ class LSUNBedroomsTrain(LSUNBase):
74
+ def __init__(self, **kwargs):
75
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
76
+
77
+
78
+ class LSUNBedroomsValidation(LSUNBase):
79
+ def __init__(self, flip_p=0.0, **kwargs):
80
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
81
+ flip_p=flip_p, **kwargs)
82
+
83
+
84
+ class LSUNCatsTrain(LSUNBase):
85
+ def __init__(self, **kwargs):
86
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
87
+
88
+
89
+ class LSUNCatsValidation(LSUNBase):
90
+ def __init__(self, flip_p=0., **kwargs):
91
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
92
+ flip_p=flip_p, **kwargs)
gligen/ldm/lr_scheduler.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ class LambdaWarmUpCosineScheduler:
5
+ """
6
+ note: use with a base_lr of 1.0
7
+ """
8
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
9
+ self.lr_warm_up_steps = warm_up_steps
10
+ self.lr_start = lr_start
11
+ self.lr_min = lr_min
12
+ self.lr_max = lr_max
13
+ self.lr_max_decay_steps = max_decay_steps
14
+ self.last_lr = 0.
15
+ self.verbosity_interval = verbosity_interval
16
+
17
+ def schedule(self, n, **kwargs):
18
+ if self.verbosity_interval > 0:
19
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
20
+ if n < self.lr_warm_up_steps:
21
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
22
+ self.last_lr = lr
23
+ return lr
24
+ else:
25
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
26
+ t = min(t, 1.0)
27
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
28
+ 1 + np.cos(t * np.pi))
29
+ self.last_lr = lr
30
+ return lr
31
+
32
+ def __call__(self, n, **kwargs):
33
+ return self.schedule(n,**kwargs)
34
+
35
+
36
+ class LambdaWarmUpCosineScheduler2:
37
+ """
38
+ supports repeated iterations, configurable via lists
39
+ note: use with a base_lr of 1.0.
40
+ """
41
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
42
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
43
+ self.lr_warm_up_steps = warm_up_steps
44
+ self.f_start = f_start
45
+ self.f_min = f_min
46
+ self.f_max = f_max
47
+ self.cycle_lengths = cycle_lengths
48
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
49
+ self.last_f = 0.
50
+ self.verbosity_interval = verbosity_interval
51
+
52
+ def find_in_interval(self, n):
53
+ interval = 0
54
+ for cl in self.cum_cycles[1:]:
55
+ if n <= cl:
56
+ return interval
57
+ interval += 1
58
+
59
+ def schedule(self, n, **kwargs):
60
+ cycle = self.find_in_interval(n)
61
+ n = n - self.cum_cycles[cycle]
62
+ if self.verbosity_interval > 0:
63
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
64
+ f"current cycle {cycle}")
65
+ if n < self.lr_warm_up_steps[cycle]:
66
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
67
+ self.last_f = f
68
+ return f
69
+ else:
70
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
71
+ t = min(t, 1.0)
72
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
73
+ 1 + np.cos(t * np.pi))
74
+ self.last_f = f
75
+ return f
76
+
77
+ def __call__(self, n, **kwargs):
78
+ return self.schedule(n, **kwargs)
79
+
80
+
81
+ class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
82
+
83
+ def schedule(self, n, **kwargs):
84
+ cycle = self.find_in_interval(n)
85
+ n = n - self.cum_cycles[cycle]
86
+ if self.verbosity_interval > 0:
87
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
88
+ f"current cycle {cycle}")
89
+
90
+ if n < self.lr_warm_up_steps[cycle]:
91
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
92
+ self.last_f = f
93
+ return f
94
+ else:
95
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
96
+ self.last_f = f
97
+ return f
98
+
gligen/ldm/modules/.DS_Store ADDED
Binary file (8.2 kB). View file
 
gligen/ldm/modules/attention.py ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from inspect import isfunction
2
+ import math
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from torch import nn, einsum
6
+ from einops import rearrange, repeat
7
+ # import configigure
8
+ # from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
9
+ from torch.utils import checkpoint
10
+ import os
11
+ from torchvision.utils import save_image
12
+
13
+ iter_att = 0
14
+
15
+ def exists(val):
16
+ return val is not None
17
+
18
+
19
+ def uniq(arr):
20
+ return{el: True for el in arr}.keys()
21
+
22
+
23
+ def default(val, d):
24
+ if exists(val):
25
+ return val
26
+ return d() if isfunction(d) else d
27
+
28
+
29
+ def max_neg_value(t):
30
+ return -torch.finfo(t.dtype).max
31
+
32
+
33
+ def init_(tensor):
34
+ dim = tensor.shape[-1]
35
+ std = 1 / math.sqrt(dim)
36
+ tensor.uniform_(-std, std)
37
+ return tensor
38
+
39
+
40
+ # feedforward
41
+ class GEGLU(nn.Module):
42
+ def __init__(self, dim_in, dim_out):
43
+ super().__init__()
44
+ self.proj = nn.Linear(dim_in, dim_out * 2)
45
+
46
+ def forward(self, x):
47
+ x, gate = self.proj(x).chunk(2, dim=-1)
48
+ return x * F.gelu(gate)
49
+
50
+
51
+ class FeedForward(nn.Module):
52
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
53
+ super().__init__()
54
+ inner_dim = int(dim * mult)
55
+ dim_out = default(dim_out, dim)
56
+ project_in = nn.Sequential(
57
+ nn.Linear(dim, inner_dim),
58
+ nn.GELU()
59
+ ) if not glu else GEGLU(dim, inner_dim)
60
+
61
+ self.net = nn.Sequential(
62
+ project_in,
63
+ nn.Dropout(dropout),
64
+ nn.Linear(inner_dim, dim_out)
65
+ )
66
+
67
+ def forward(self, x):
68
+ return self.net(x)
69
+
70
+
71
+ def zero_module(module):
72
+ """
73
+ Zero out the parameters of a module and return it.
74
+ """
75
+ for p in module.parameters():
76
+ p.detach().zero_()
77
+ return module
78
+
79
+
80
+ def Normalize(in_channels):
81
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
82
+
83
+
84
+ class LinearAttention(nn.Module):
85
+ def __init__(self, dim, heads=4, dim_head=32):
86
+ super().__init__()
87
+ self.heads = heads
88
+ hidden_dim = dim_head * heads
89
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
90
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
91
+
92
+ def forward(self, x):
93
+ b, c, h, w = x.shape
94
+ qkv = self.to_qkv(x)
95
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
96
+ k = k.softmax(dim=-1)
97
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
98
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
99
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
100
+ return self.to_out(out)
101
+
102
+
103
+
104
+
105
+
106
+ class CrossAttention(nn.Module):
107
+ def __init__(self, query_dim, key_dim, value_dim, heads=8, dim_head=64, dropout=0):
108
+ super().__init__()
109
+ inner_dim = dim_head * heads
110
+ self.scale = dim_head ** -0.5
111
+ self.heads = heads
112
+
113
+
114
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
115
+ self.to_k = nn.Linear(key_dim, inner_dim, bias=False)
116
+ self.to_v = nn.Linear(value_dim, inner_dim, bias=False)
117
+
118
+
119
+ self.to_out = nn.Sequential( nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) )
120
+
121
+
122
+ def fill_inf_from_mask(self, sim, mask):
123
+ if mask is not None:
124
+ B,M = mask.shape
125
+ mask = mask.unsqueeze(1).repeat(1,self.heads,1).reshape(B*self.heads,1,-1)
126
+ max_neg_value = -torch.finfo(sim.dtype).max
127
+ sim.masked_fill_(~mask, max_neg_value)
128
+ return sim
129
+ # def scaled_dot_product(q, k, v, mask=None):
130
+ # d_k = q.size()[-1]
131
+ # attn_logits = torch.matmul(q, k.transpose(-2, -1))
132
+ # attn_logits = attn_logits / math.sqrt(d_k)
133
+ # if mask is not None:
134
+ # attn_logits = attn_logits.masked_fill(mask == 0, -9e15)
135
+ # attention = F.softmax(attn_logits, dim=-1)
136
+ # values = torch.matmul(attention, v)
137
+ # return values, attention
138
+
139
+ def forward(self, x, key, value, mask=None):
140
+ # import pdb; pdb.set_trace()
141
+ q = self.to_q(x) # B*N*(H*C)
142
+ k = self.to_k(key) # B*M*(H*C)
143
+ v = self.to_v(value) # B*M*(H*C)
144
+
145
+ B, N, HC = q.shape
146
+ _, M, _ = key.shape
147
+ H = self.heads
148
+ C = HC // H
149
+
150
+ q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
151
+ k = k.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C
152
+ v = v.view(B,M,H,C).permute(0,2,1,3).reshape(B*H,M,C) # (B*H)*M*C
153
+
154
+ sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale # (B*H)*N*M
155
+ self.fill_inf_from_mask(sim, mask)
156
+ attn = sim.softmax(dim=-1) # (B*H)*N*M
157
+ # import pdb; pdb.set_trace()
158
+ # if attn.shape[1] == 4096:
159
+ # self.visual_att(attn)
160
+ out = torch.einsum('b i j, b j d -> b i d', attn, v) # (B*H)*N*C
161
+ out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C)
162
+
163
+ return self.to_out(out), attn
164
+ def visual_att(self, att):
165
+ global iter_att
166
+ ll = [0,2,7]
167
+ for i in range(12):
168
+ kk = torch.sum(att[:,:,i], axis=0)
169
+ kk = kk.reshape(64,64)
170
+ save_image( (kk-kk.min()) / (kk.max() - kk.min()) , os.path.join('att', str(iter_att) + '_' +str(i) + '.png'))
171
+ iter_att += 1
172
+
173
+
174
+
175
+ class SelfAttention(nn.Module):
176
+ def __init__(self, query_dim, heads=8, dim_head=64, dropout=0.):
177
+ super().__init__()
178
+ inner_dim = dim_head * heads
179
+ self.scale = dim_head ** -0.5
180
+ self.heads = heads
181
+
182
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
183
+ self.to_k = nn.Linear(query_dim, inner_dim, bias=False)
184
+ self.to_v = nn.Linear(query_dim, inner_dim, bias=False)
185
+
186
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout) )
187
+
188
+ def forward(self, x, gated=False):
189
+ q = self.to_q(x) # B*N*(H*C)
190
+ k = self.to_k(x) # B*N*(H*C)
191
+ v = self.to_v(x) # B*N*(H*C)
192
+
193
+ B, N, HC = q.shape
194
+ H = self.heads
195
+ C = HC // H
196
+ # if gated: import pdb; pdb.set_trace()
197
+ # import pdb; pdb.set_trace()
198
+ q = q.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
199
+ k = k.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
200
+ v = v.view(B,N,H,C).permute(0,2,1,3).reshape(B*H,N,C) # (B*H)*N*C
201
+
202
+ sim = torch.einsum('b i c, b j c -> b i j', q, k) * self.scale # (B*H)*N*N
203
+ attn = sim.softmax(dim=-1) # (B*H)*N*N
204
+ # if gated and attn.shape[1] == 4126:
205
+ # self.visual_att(attn)
206
+ out = torch.einsum('b i j, b j c -> b i c', attn, v) # (B*H)*N*C
207
+ out = out.view(B,H,N,C).permute(0,2,1,3).reshape(B,N,(H*C)) # B*N*(H*C)
208
+
209
+ return self.to_out(out), attn
210
+
211
+ def visual_att(self, att):
212
+ global iter_att
213
+ ll = [0,2,7]
214
+ for i in range():
215
+ kk = torch.sum(att[i],axis=0)
216
+ kk = kk[:4096].reshape(64,64)
217
+ save_image( (kk-kk.min()) / (kk.max() - kk.min()) , os.path.join('att', str(iter_att) + '_' +str(i) + '.png'))
218
+ iter_att += 1
219
+
220
+
221
+ class GatedCrossAttentionDense(nn.Module):
222
+ def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head):
223
+ super().__init__()
224
+
225
+ self.attn = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head)
226
+ self.ff = FeedForward(query_dim, glu=True)
227
+
228
+ self.norm1 = nn.LayerNorm(query_dim)
229
+ self.norm2 = nn.LayerNorm(query_dim)
230
+
231
+ self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) )
232
+ self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) )
233
+
234
+ # this can be useful: we can externally change magnitude of tanh(alpha)
235
+ # for example, when it is set to 0, then the entire model is same as original one
236
+ self.scale = 1
237
+
238
+ def forward(self, x, objs):
239
+
240
+ x = x + self.scale*torch.tanh(self.alpha_attn) * self.attn( self.norm1(x), objs, objs)
241
+ x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) )
242
+
243
+ return x
244
+
245
+
246
+ class GatedSelfAttentionDense(nn.Module):
247
+ def __init__(self, query_dim, context_dim, n_heads, d_head):
248
+ super().__init__()
249
+
250
+ # we need a linear projection since we need cat visual feature and obj feature
251
+ self.linear = nn.Linear(context_dim, query_dim)
252
+
253
+ self.attn = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
254
+ self.ff = FeedForward(query_dim, glu=True)
255
+
256
+ self.norm1 = nn.LayerNorm(query_dim)
257
+ self.norm2 = nn.LayerNorm(query_dim)
258
+
259
+ self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) )
260
+ self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) )
261
+
262
+ # this can be useful: we can externally change magnitude of tanh(alpha)
263
+ # for example, when it is set to 0, then the entire model is same as original one
264
+ self.scale = 1
265
+
266
+
267
+ def forward(self, x, objs,t):
268
+ # if t >300:
269
+ # self.scale = 1
270
+ # elif t > 200:
271
+ # self.scale = 0.9
272
+ # else:
273
+ # self.scale = 0.6
274
+ # if t >700:
275
+ # self.scale = 1
276
+ # elif t > 300:
277
+ # self.scale = 0.7
278
+ # else:
279
+ # self.scale = 0.4
280
+ # self.scale = 0
281
+
282
+ N_visual = x.shape[1]
283
+ objs = self.linear(objs)
284
+ out, grounding_att = self.attn( self.norm1(torch.cat([x,objs],dim=1)), True )
285
+ out = out[:,0:N_visual,:]
286
+ x = x + self.scale*torch.tanh(self.alpha_attn) * out
287
+ x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) )
288
+
289
+ return x , grounding_att
290
+
291
+
292
+
293
+
294
+
295
+
296
+ class GatedSelfAttentionDense2(nn.Module):
297
+ def __init__(self, query_dim, context_dim, n_heads, d_head):
298
+ super().__init__()
299
+
300
+ # we need a linear projection since we need cat visual feature and obj feature
301
+ self.linear = nn.Linear(context_dim, query_dim)
302
+
303
+ self.attn = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
304
+ self.ff = FeedForward(query_dim, glu=True)
305
+
306
+ self.norm1 = nn.LayerNorm(query_dim)
307
+ self.norm2 = nn.LayerNorm(query_dim)
308
+
309
+ self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)) )
310
+ self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)) )
311
+
312
+ # this can be useful: we can externally change magnitude of tanh(alpha)
313
+ # for example, when it is set to 0, then the entire model is same as original one
314
+ self.scale = 1
315
+
316
+
317
+ def forward(self, x, objs):
318
+
319
+ B, N_visual, _ = x.shape
320
+ B, N_ground, _ = objs.shape
321
+
322
+ objs = self.linear(objs)
323
+
324
+ # sanity check
325
+ size_v = math.sqrt(N_visual)
326
+ size_g = math.sqrt(N_ground)
327
+ assert int(size_v) == size_v, "Visual tokens must be square rootable"
328
+ assert int(size_g) == size_g, "Grounding tokens must be square rootable"
329
+ size_v = int(size_v)
330
+ size_g = int(size_g)
331
+
332
+ # select grounding token and resize it to visual token size as residual
333
+ out = self.attn( self.norm1(torch.cat([x,objs],dim=1)) )[:,N_visual:,:]
334
+ out = out.permute(0,2,1).reshape( B,-1,size_g,size_g )
335
+ out = torch.nn.functional.interpolate(out, (size_v,size_v), mode='bicubic')
336
+ residual = out.reshape(B,-1,N_visual).permute(0,2,1)
337
+
338
+ # add residual to visual feature
339
+ x = x + self.scale*torch.tanh(self.alpha_attn) * residual
340
+ x = x + self.scale*torch.tanh(self.alpha_dense) * self.ff( self.norm2(x) )
341
+
342
+ return x
343
+
344
+
345
+
346
+
347
+
348
+ class BasicTransformerBlock(nn.Module):
349
+ def __init__(self, query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=True):
350
+ super().__init__()
351
+ self.attn1 = SelfAttention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
352
+ self.ff = FeedForward(query_dim, glu=True)
353
+ self.attn2 = CrossAttention(query_dim=query_dim, key_dim=key_dim, value_dim=value_dim, heads=n_heads, dim_head=d_head)
354
+ self.norm1 = nn.LayerNorm(query_dim)
355
+ self.norm2 = nn.LayerNorm(query_dim)
356
+ self.norm3 = nn.LayerNorm(query_dim)
357
+ self.use_checkpoint = use_checkpoint
358
+
359
+ if fuser_type == "gatedSA":
360
+ # note key_dim here actually is context_dim
361
+ self.fuser = GatedSelfAttentionDense(query_dim, key_dim, n_heads, d_head)
362
+ elif fuser_type == "gatedSA2":
363
+ # note key_dim here actually is context_dim
364
+ self.fuser = GatedSelfAttentionDense2(query_dim, key_dim, n_heads, d_head)
365
+ elif fuser_type == "gatedCA":
366
+ self.fuser = GatedCrossAttentionDense(query_dim, key_dim, value_dim, n_heads, d_head)
367
+ else:
368
+ assert False
369
+
370
+
371
+ def forward(self, x, context, objs,t):
372
+ # return checkpoint(self._forward, (x, context, objs), self.parameters(), self.use_checkpoint)
373
+ # import pdb; pdb.set_trace()
374
+ if self.use_checkpoint and x.requires_grad:
375
+ return checkpoint.checkpoint(self._forward, x, context, objs,t)
376
+ else:
377
+ return self._forward(x, context, objs,t)
378
+
379
+ def _forward(self, x, context, objs,t):
380
+ # self_att_grounding = []
381
+ out, self_prob = self.attn1( self.norm1(x) )
382
+ x = x + out
383
+ x, self_prob_grounding = self.fuser(x, objs,t) # identity mapping in the beginning
384
+ x_1, prob = self.attn2(self.norm2(x), context, context)
385
+ x = x + x_1
386
+ x = self.ff(self.norm3(x)) + x
387
+ # self_att_grounding.append(self_prob)
388
+ # self_att_grounding.append(self_prob_grounding)
389
+ return x, prob, self_prob
390
+
391
+
392
+ class SpatialTransformer(nn.Module):
393
+ def __init__(self, in_channels, key_dim, value_dim, n_heads, d_head, depth=1, fuser_type=None, use_checkpoint=True):
394
+ super().__init__()
395
+ self.in_channels = in_channels
396
+ query_dim = n_heads * d_head
397
+ self.norm = Normalize(in_channels)
398
+
399
+
400
+ self.proj_in = nn.Conv2d(in_channels,
401
+ query_dim,
402
+ kernel_size=1,
403
+ stride=1,
404
+ padding=0)
405
+
406
+ self.transformer_blocks = nn.ModuleList(
407
+ [BasicTransformerBlock(query_dim, key_dim, value_dim, n_heads, d_head, fuser_type, use_checkpoint=use_checkpoint)
408
+ for d in range(depth)]
409
+ )
410
+
411
+ self.proj_out = zero_module(nn.Conv2d(query_dim,
412
+ in_channels,
413
+ kernel_size=1,
414
+ stride=1,
415
+ padding=0))
416
+
417
+ def forward(self, x, context, objs,t):
418
+ b, c, h, w = x.shape
419
+ x_in = x
420
+ x = self.norm(x)
421
+ x = self.proj_in(x)
422
+ x = rearrange(x, 'b c h w -> b (h w) c')
423
+ probs = []
424
+ self_prob_list = []
425
+ for block in self.transformer_blocks:
426
+ x, prob, self_prob = block(x, context, objs,t)
427
+ probs.append(prob)
428
+ self_prob_list.append(self_prob)
429
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
430
+ x = self.proj_out(x)
431
+ return x + x_in, probs, self_prob_list
gligen/ldm/modules/diffusionmodules/__init__.py ADDED
File without changes
gligen/ldm/modules/diffusionmodules/canny_grounding_downsampler.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+
7
+
8
+
9
+ class GroundingDownsampler(nn.Module):
10
+ def __init__(self, resize_input=256, out_dim=8):
11
+ super().__init__()
12
+ self.resize_input = resize_input
13
+ self.out_dim = out_dim
14
+
15
+ self.layers = nn.Sequential(
16
+ nn.Conv2d(1,4,4,2,1),
17
+ nn.SiLU(),
18
+ nn.Conv2d(4,self.out_dim,4,2,1)
19
+ )
20
+
21
+ def forward(self, grounding_extra_input):
22
+ # this is actually gary scale, but converted to rgb in dataset, information redudant
23
+ grounding_extra_input = grounding_extra_input[:,0].unsqueeze(1)
24
+
25
+ out = torch.nn.functional.interpolate(grounding_extra_input, (self.resize_input,self.resize_input), mode='bicubic')
26
+ out = self.layers(out)
27
+
28
+ assert out.shape[1] == self.out_dim
29
+ return out
30
+
31
+
gligen/ldm/modules/diffusionmodules/canny_grounding_net.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+ from ..attention import SelfAttention, FeedForward
7
+ from .convnext import convnext_tiny
8
+
9
+
10
+
11
+
12
+ class PositionNet(nn.Module):
13
+ def __init__(self, resize_input=448, out_dim=768):
14
+ super().__init__()
15
+ self.resize_input = resize_input
16
+ self.down_factor = 32 # determined by the convnext backbone
17
+ self.out_dim = out_dim
18
+ assert self.resize_input % self.down_factor == 0
19
+
20
+ self.convnext_tiny_backbone = convnext_tiny(pretrained=True)
21
+
22
+ self.num_tokens = (self.resize_input // self.down_factor) ** 2
23
+
24
+ convnext_feature_dim = 768
25
+ self.pos_embedding = nn.Parameter(torch.empty(1, self.num_tokens, convnext_feature_dim).normal_(std=0.02)) # from BERT
26
+
27
+ self.linears = nn.Sequential(
28
+ nn.Linear( convnext_feature_dim, 512),
29
+ nn.SiLU(),
30
+ nn.Linear( 512, 512),
31
+ nn.SiLU(),
32
+ nn.Linear(512, out_dim),
33
+ )
34
+
35
+ self.null_feature = torch.nn.Parameter(torch.zeros([convnext_feature_dim]))
36
+
37
+
38
+ def forward(self, canny_edge, mask):
39
+ B = canny_edge.shape[0]
40
+
41
+ # token from edge map
42
+ canny_edge = torch.nn.functional.interpolate(canny_edge, self.resize_input)
43
+ canny_edge_feature = self.convnext_tiny_backbone(canny_edge)
44
+ objs = canny_edge_feature.reshape(B, -1, self.num_tokens)
45
+ objs = objs.permute(0, 2, 1) # N*Num_tokens*dim
46
+
47
+ # expand null token
48
+ null_objs = self.null_feature.view(1,1,-1)
49
+ null_objs = null_objs.repeat(B,self.num_tokens,1)
50
+
51
+ # mask replacing
52
+ mask = mask.view(-1,1,1)
53
+ objs = objs*mask + null_objs*(1-mask)
54
+
55
+ # add pos
56
+ objs = objs + self.pos_embedding
57
+
58
+ # fuse them
59
+ objs = self.linears(objs)
60
+
61
+ assert objs.shape == torch.Size([B,self.num_tokens,self.out_dim])
62
+ return objs
63
+
64
+
65
+
gligen/ldm/modules/diffusionmodules/convnext.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+
3
+ # All rights reserved.
4
+
5
+ # This source code is licensed under the license found in the
6
+ # LICENSE file in the root directory of this source tree.
7
+
8
+
9
+ import torch
10
+ import torch.nn as nn
11
+ import torch.nn.functional as F
12
+ from timm.models.layers import trunc_normal_, DropPath
13
+ from timm.models.registry import register_model
14
+
15
+ class Block(nn.Module):
16
+ r""" ConvNeXt Block. There are two equivalent implementations:
17
+ (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
18
+ (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
19
+ We use (2) as we find it slightly faster in PyTorch
20
+
21
+ Args:
22
+ dim (int): Number of input channels.
23
+ drop_path (float): Stochastic depth rate. Default: 0.0
24
+ layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
25
+ """
26
+ def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
27
+ super().__init__()
28
+ self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
29
+ self.norm = LayerNorm(dim, eps=1e-6)
30
+ self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
31
+ self.act = nn.GELU()
32
+ self.pwconv2 = nn.Linear(4 * dim, dim)
33
+ self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((dim)),
34
+ requires_grad=True) if layer_scale_init_value > 0 else None
35
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
36
+
37
+ def forward(self, x):
38
+ input = x
39
+ x = self.dwconv(x)
40
+ x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
41
+ x = self.norm(x)
42
+ x = self.pwconv1(x)
43
+ x = self.act(x)
44
+ x = self.pwconv2(x)
45
+ if self.gamma is not None:
46
+ x = self.gamma * x
47
+ x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
48
+
49
+ x = input + self.drop_path(x)
50
+ return x
51
+
52
+ class ConvNeXt(nn.Module):
53
+ r""" ConvNeXt
54
+ A PyTorch impl of : `A ConvNet for the 2020s` -
55
+ https://arxiv.org/pdf/2201.03545.pdf
56
+
57
+ Args:
58
+ in_chans (int): Number of input image channels. Default: 3
59
+ num_classes (int): Number of classes for classification head. Default: 1000
60
+ depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
61
+ dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
62
+ drop_path_rate (float): Stochastic depth rate. Default: 0.
63
+ layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
64
+ head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
65
+ """
66
+ def __init__(self, in_chans=3, num_classes=1000,
67
+ depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], drop_path_rate=0.,
68
+ layer_scale_init_value=1e-6, head_init_scale=1.,
69
+ ):
70
+ super().__init__()
71
+
72
+ self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
73
+ stem = nn.Sequential(
74
+ nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
75
+ LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
76
+ )
77
+ self.downsample_layers.append(stem)
78
+ for i in range(3):
79
+ downsample_layer = nn.Sequential(
80
+ LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
81
+ nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
82
+ )
83
+ self.downsample_layers.append(downsample_layer)
84
+
85
+ self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
86
+ dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
87
+ cur = 0
88
+ for i in range(4):
89
+ stage = nn.Sequential(
90
+ *[Block(dim=dims[i], drop_path=dp_rates[cur + j],
91
+ layer_scale_init_value=layer_scale_init_value) for j in range(depths[i])]
92
+ )
93
+ self.stages.append(stage)
94
+ cur += depths[i]
95
+
96
+ # self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
97
+ # self.head = nn.Linear(dims[-1], num_classes)
98
+
99
+ # self.apply(self._init_weights)
100
+ # self.head.weight.data.mul_(head_init_scale)
101
+ # self.head.bias.data.mul_(head_init_scale)
102
+
103
+ def _init_weights(self, m):
104
+ if isinstance(m, (nn.Conv2d, nn.Linear)):
105
+ trunc_normal_(m.weight, std=.02)
106
+ nn.init.constant_(m.bias, 0)
107
+
108
+ def forward_features(self, x):
109
+ for i in range(4):
110
+ x = self.downsample_layers[i](x)
111
+ x = self.stages[i](x)
112
+ return x
113
+ # return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
114
+
115
+ def forward(self, x):
116
+ x = self.forward_features(x)
117
+ # x = self.head(x)
118
+ return x
119
+
120
+ class LayerNorm(nn.Module):
121
+ r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
122
+ The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
123
+ shape (batch_size, height, width, channels) while channels_first corresponds to inputs
124
+ with shape (batch_size, channels, height, width).
125
+ """
126
+ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
127
+ super().__init__()
128
+ self.weight = nn.Parameter(torch.ones(normalized_shape))
129
+ self.bias = nn.Parameter(torch.zeros(normalized_shape))
130
+ self.eps = eps
131
+ self.data_format = data_format
132
+ if self.data_format not in ["channels_last", "channels_first"]:
133
+ raise NotImplementedError
134
+ self.normalized_shape = (normalized_shape, )
135
+
136
+ def forward(self, x):
137
+ if self.data_format == "channels_last":
138
+ return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
139
+ elif self.data_format == "channels_first":
140
+ u = x.mean(1, keepdim=True)
141
+ s = (x - u).pow(2).mean(1, keepdim=True)
142
+ x = (x - u) / torch.sqrt(s + self.eps)
143
+ x = self.weight[:, None, None] * x + self.bias[:, None, None]
144
+ return x
145
+
146
+
147
+ model_urls = {
148
+ "convnext_tiny_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_1k_224_ema.pth",
149
+ "convnext_small_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_1k_224_ema.pth",
150
+ "convnext_base_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_1k_224_ema.pth",
151
+ "convnext_large_1k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_1k_224_ema.pth",
152
+ "convnext_tiny_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_tiny_22k_224.pth",
153
+ "convnext_small_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_small_22k_224.pth",
154
+ "convnext_base_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_base_22k_224.pth",
155
+ "convnext_large_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_large_22k_224.pth",
156
+ "convnext_xlarge_22k": "https://dl.fbaipublicfiles.com/convnext/convnext_xlarge_22k_224.pth",
157
+ }
158
+
159
+ @register_model
160
+ def convnext_tiny(pretrained=False,in_22k=False, **kwargs):
161
+ model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
162
+ if pretrained:
163
+ url = model_urls['convnext_tiny_22k'] if in_22k else model_urls['convnext_tiny_1k']
164
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
165
+ model.load_state_dict(checkpoint["model"], strict=False) # we remove classifer head
166
+ return model
167
+
168
+ @register_model
169
+ def convnext_small(pretrained=False,in_22k=False, **kwargs):
170
+ model = ConvNeXt(depths=[3, 3, 27, 3], dims=[96, 192, 384, 768], **kwargs)
171
+ if pretrained:
172
+ url = model_urls['convnext_small_22k'] if in_22k else model_urls['convnext_small_1k']
173
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
174
+ model.load_state_dict(checkpoint["model"])
175
+ return model
176
+
177
+ @register_model
178
+ def convnext_base(pretrained=False, in_22k=False, **kwargs):
179
+ model = ConvNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
180
+ if pretrained:
181
+ url = model_urls['convnext_base_22k'] if in_22k else model_urls['convnext_base_1k']
182
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
183
+ model.load_state_dict(checkpoint["model"])
184
+ return model
185
+
186
+ @register_model
187
+ def convnext_large(pretrained=False, in_22k=False, **kwargs):
188
+ model = ConvNeXt(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
189
+ if pretrained:
190
+ url = model_urls['convnext_large_22k'] if in_22k else model_urls['convnext_large_1k']
191
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
192
+ model.load_state_dict(checkpoint["model"])
193
+ return model
194
+
195
+ @register_model
196
+ def convnext_xlarge(pretrained=False, in_22k=False, **kwargs):
197
+ model = ConvNeXt(depths=[3, 3, 27, 3], dims=[256, 512, 1024, 2048], **kwargs)
198
+ if pretrained:
199
+ assert in_22k, "only ImageNet-22K pre-trained ConvNeXt-XL is available; please set in_22k=True"
200
+ url = model_urls['convnext_xlarge_22k']
201
+ checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
202
+ model.load_state_dict(checkpoint["model"])
203
+ return model
gligen/ldm/modules/diffusionmodules/depth_grounding_downsampler.py ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+
7
+
8
+
9
+ class GroundingDownsampler(nn.Module):
10
+ def __init__(self, resize_input=256, out_dim=8):
11
+ super().__init__()
12
+ self.resize_input = resize_input
13
+ self.out_dim = out_dim
14
+
15
+ self.layers = nn.Sequential(
16
+ nn.Conv2d(1,4,4,2,1),
17
+ nn.SiLU(),
18
+ nn.Conv2d(4,self.out_dim,4,2,1)
19
+ )
20
+
21
+ def forward(self, grounding_extra_input):
22
+ # this is actually gary scale, but converted to rgb in dataset, information redudant
23
+
24
+ grounding_extra_input = grounding_extra_input[:,0].unsqueeze(1)
25
+
26
+ out = torch.nn.functional.interpolate(grounding_extra_input, (self.resize_input,self.resize_input), mode='bicubic')
27
+ out = self.layers(out)
28
+
29
+ assert out.shape[1] == self.out_dim
30
+ return out
31
+
32
+
gligen/ldm/modules/diffusionmodules/depth_grounding_net.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+ from ..attention import SelfAttention, FeedForward
7
+ from .convnext import convnext_tiny
8
+
9
+
10
+
11
+
12
+ class PositionNet(nn.Module):
13
+ def __init__(self, resize_input=448, out_dim=768):
14
+ super().__init__()
15
+ self.resize_input = resize_input
16
+ self.down_factor = 32 # determined by the convnext backbone
17
+ self.out_dim = out_dim
18
+ assert self.resize_input % self.down_factor == 0
19
+
20
+ self.convnext_tiny_backbone = convnext_tiny(pretrained=True)
21
+
22
+ self.num_tokens = (self.resize_input // self.down_factor) ** 2
23
+
24
+ convnext_feature_dim = 768
25
+ self.pos_embedding = nn.Parameter(torch.empty(1, self.num_tokens, convnext_feature_dim).normal_(std=0.02)) # from BERT
26
+
27
+ self.linears = nn.Sequential(
28
+ nn.Linear( convnext_feature_dim, 512),
29
+ nn.SiLU(),
30
+ nn.Linear( 512, 512),
31
+ nn.SiLU(),
32
+ nn.Linear(512, out_dim),
33
+ )
34
+
35
+ self.null_feature = torch.nn.Parameter(torch.zeros([convnext_feature_dim]))
36
+
37
+
38
+ def forward(self, depth, mask):
39
+ B = depth.shape[0]
40
+
41
+ # token from edge map
42
+ depth = torch.nn.functional.interpolate(depth, self.resize_input)
43
+ depth_feature = self.convnext_tiny_backbone(depth)
44
+ objs = depth_feature.reshape(B, -1, self.num_tokens)
45
+ objs = objs.permute(0, 2, 1) # N*Num_tokens*dim
46
+
47
+ # expand null token
48
+ null_objs = self.null_feature.view(1,1,-1)
49
+ null_objs = null_objs.repeat(B,self.num_tokens,1)
50
+
51
+ # mask replacing
52
+ mask = mask.view(-1,1,1)
53
+ objs = objs*mask + null_objs*(1-mask)
54
+
55
+ # add pos
56
+ objs = objs + self.pos_embedding
57
+
58
+ # fuse them
59
+ objs = self.linears(objs)
60
+
61
+ assert objs.shape == torch.Size([B,self.num_tokens,self.out_dim])
62
+ return objs
63
+
64
+
65
+
gligen/ldm/modules/diffusionmodules/grounding_net_example.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This is a high-level pseudo code for grounding net.
3
+
4
+ This class needs to tokenize grounding input into gronding tokens which
5
+ will be used in GatedAttenion layers.
6
+
7
+
8
+ class PositionNet(nn.Module):
9
+ def __init__(self, **kwargs):
10
+ super().__init__()
11
+
12
+ kwargs should be defined by model.grounding_tokenizer in config yaml file.
13
+
14
+ def forward(self, **kwargs):
15
+
16
+ kwargs should be the output of grounding_tokenizer_input network
17
+
18
+ return grounding_tokens # with shape: Batch * Num_Of_Token* Token_Channel_Dimension
19
+
20
+
21
+
22
+ """
gligen/ldm/modules/diffusionmodules/hed_grounding_downsampler.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+
7
+
8
+
9
+ class GroundingDownsampler(nn.Module):
10
+ def __init__(self, out_dim=1):
11
+ super().__init__()
12
+ self.out_dim = out_dim
13
+ # No learnable params for hed edge map, just downsample it with bicubic
14
+
15
+ def forward(self, grounding_extra_input):
16
+ # this is actually gary scale, but converted to rgb in dataset, information redudant
17
+ grounding_extra_input = grounding_extra_input[:,0].unsqueeze(1)
18
+
19
+ out = torch.nn.functional.interpolate(grounding_extra_input, (64,64), mode='bicubic')
20
+ assert out.shape[1] == self.out_dim
21
+ return out
22
+
23
+
gligen/ldm/modules/diffusionmodules/hed_grounding_net.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+ from ..attention import SelfAttention, FeedForward
7
+ from .convnext import convnext_tiny
8
+
9
+
10
+
11
+
12
+ class PositionNet(nn.Module):
13
+ def __init__(self, resize_input=448, out_dim=768):
14
+ super().__init__()
15
+ self.resize_input = resize_input
16
+ self.down_factor = 32 # determined by the res50 backbone
17
+ self.out_dim = out_dim
18
+ assert self.resize_input % self.down_factor == 0
19
+
20
+ self.convnext_tiny_backbone = convnext_tiny(pretrained=True)
21
+
22
+ self.num_tokens = (self.resize_input // self.down_factor) ** 2
23
+
24
+ convnext_feature_dim = 768
25
+ self.pos_embedding = nn.Parameter(torch.empty(1, self.num_tokens, convnext_feature_dim).normal_(std=0.02)) # from BERT
26
+
27
+ self.linears = nn.Sequential(
28
+ nn.Linear( convnext_feature_dim, 512),
29
+ nn.SiLU(),
30
+ nn.Linear( 512, 512),
31
+ nn.SiLU(),
32
+ nn.Linear(512, out_dim),
33
+ )
34
+
35
+ self.null_feature = torch.nn.Parameter(torch.zeros([convnext_feature_dim]))
36
+
37
+
38
+ def forward(self, hed_edge, mask):
39
+ B = hed_edge.shape[0]
40
+
41
+ # token from edge map
42
+ hed_edge = torch.nn.functional.interpolate(hed_edge, self.resize_input)
43
+ hed_edge_feature = self.convnext_tiny_backbone(hed_edge)
44
+ objs = hed_edge_feature.reshape(B, -1, self.num_tokens)
45
+ objs = objs.permute(0, 2, 1) # N*Num_tokens*dim
46
+
47
+ # expand null token
48
+ null_objs = self.null_feature.view(1,1,-1)
49
+ null_objs = null_objs.repeat(B,self.num_tokens,1)
50
+
51
+ # mask replacing
52
+ mask = mask.view(-1,1,1)
53
+ objs = objs*mask + null_objs*(1-mask)
54
+
55
+ # add pos
56
+ objs = objs + self.pos_embedding
57
+
58
+ # fuse them
59
+ objs = self.linears(objs)
60
+
61
+ assert objs.shape == torch.Size([B,self.num_tokens,self.out_dim])
62
+ return objs
63
+
64
+
65
+
gligen/ldm/modules/diffusionmodules/keypoint_grounding_net.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+
7
+
8
+
9
+ class PositionNet(nn.Module):
10
+ def __init__(self, max_persons_per_image, out_dim, fourier_freqs=8):
11
+ super().__init__()
12
+ self.max_persons_per_image = max_persons_per_image
13
+ self.out_dim = out_dim
14
+
15
+ self.person_embeddings = torch.nn.Parameter(torch.zeros([max_persons_per_image,out_dim]))
16
+ self.keypoint_embeddings = torch.nn.Parameter(torch.zeros([17,out_dim]))
17
+
18
+
19
+ self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
20
+ self.position_dim = fourier_freqs*2*2 # 2 is sin&cos, 2 is xy
21
+
22
+ self.linears = nn.Sequential(
23
+ nn.Linear( self.out_dim + self.position_dim, 512),
24
+ nn.SiLU(),
25
+ nn.Linear( 512, 512),
26
+ nn.SiLU(),
27
+ nn.Linear(512, out_dim),
28
+ )
29
+
30
+ self.null_person_feature = torch.nn.Parameter(torch.zeros([self.out_dim]))
31
+ self.null_xy_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
32
+
33
+
34
+ def forward(self, points, masks):
35
+
36
+ masks = masks.unsqueeze(-1)
37
+ N = points.shape[0]
38
+
39
+ person_embeddings = self.person_embeddings.unsqueeze(1).repeat(1,17,1).reshape(self.max_persons_per_image*17, self.out_dim)
40
+ keypoint_embeddings = torch.cat([self.keypoint_embeddings]*self.max_persons_per_image, dim=0)
41
+ person_embeddings = person_embeddings + keypoint_embeddings # (num_person*17) * C
42
+ person_embeddings = person_embeddings.unsqueeze(0).repeat(N,1,1)
43
+
44
+ # embedding position (it may includes padding as placeholder)
45
+ xy_embedding = self.fourier_embedder(points) # B*N*2 --> B*N*C
46
+
47
+
48
+ # learnable null embedding
49
+ person_null = self.null_person_feature.view(1,1,-1)
50
+ xy_null = self.null_xy_feature.view(1,1,-1)
51
+
52
+ # replace padding with learnable null embedding
53
+ person_embeddings = person_embeddings*masks + (1-masks)*person_null
54
+ xy_embedding = xy_embedding*masks + (1-masks)*xy_null
55
+
56
+ objs = self.linears( torch.cat([person_embeddings, xy_embedding], dim=-1) )
57
+
58
+ return objs
59
+
60
+
61
+
gligen/ldm/modules/diffusionmodules/model.py ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pytorch_diffusion + derived encoder decoder
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import rearrange
7
+
8
+ from ldm.util import instantiate_from_config
9
+ from ldm.modules.attention import LinearAttention
10
+
11
+
12
+ def get_timestep_embedding(timesteps, embedding_dim):
13
+ """
14
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
15
+ From Fairseq.
16
+ Build sinusoidal embeddings.
17
+ This matches the implementation in tensor2tensor, but differs slightly
18
+ from the description in Section 3.5 of "Attention Is All You Need".
19
+ """
20
+ assert len(timesteps.shape) == 1
21
+
22
+ half_dim = embedding_dim // 2
23
+ emb = math.log(10000) / (half_dim - 1)
24
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
25
+ emb = emb.to(device=timesteps.device)
26
+ emb = timesteps.float()[:, None] * emb[None, :]
27
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
28
+ if embedding_dim % 2 == 1: # zero pad
29
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
30
+ return emb
31
+
32
+
33
+ def nonlinearity(x):
34
+ # swish
35
+ return x*torch.sigmoid(x)
36
+
37
+
38
+ def Normalize(in_channels, num_groups=32):
39
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
40
+
41
+
42
+ class Upsample(nn.Module):
43
+ def __init__(self, in_channels, with_conv):
44
+ super().__init__()
45
+ self.with_conv = with_conv
46
+ if self.with_conv:
47
+ self.conv = torch.nn.Conv2d(in_channels,
48
+ in_channels,
49
+ kernel_size=3,
50
+ stride=1,
51
+ padding=1)
52
+
53
+ def forward(self, x):
54
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
55
+ if self.with_conv:
56
+ x = self.conv(x)
57
+ return x
58
+
59
+
60
+ class Downsample(nn.Module):
61
+ def __init__(self, in_channels, with_conv):
62
+ super().__init__()
63
+ self.with_conv = with_conv
64
+ if self.with_conv:
65
+ # no asymmetric padding in torch conv, must do it ourselves
66
+ self.conv = torch.nn.Conv2d(in_channels,
67
+ in_channels,
68
+ kernel_size=3,
69
+ stride=2,
70
+ padding=0)
71
+
72
+ def forward(self, x):
73
+ if self.with_conv:
74
+ pad = (0,1,0,1)
75
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
76
+ x = self.conv(x)
77
+ else:
78
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
79
+ return x
80
+
81
+
82
+ class ResnetBlock(nn.Module):
83
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
84
+ dropout, temb_channels=512):
85
+ super().__init__()
86
+ self.in_channels = in_channels
87
+ out_channels = in_channels if out_channels is None else out_channels
88
+ self.out_channels = out_channels
89
+ self.use_conv_shortcut = conv_shortcut
90
+
91
+ self.norm1 = Normalize(in_channels)
92
+ self.conv1 = torch.nn.Conv2d(in_channels,
93
+ out_channels,
94
+ kernel_size=3,
95
+ stride=1,
96
+ padding=1)
97
+ if temb_channels > 0:
98
+ self.temb_proj = torch.nn.Linear(temb_channels,
99
+ out_channels)
100
+ self.norm2 = Normalize(out_channels)
101
+ self.dropout = torch.nn.Dropout(dropout)
102
+ self.conv2 = torch.nn.Conv2d(out_channels,
103
+ out_channels,
104
+ kernel_size=3,
105
+ stride=1,
106
+ padding=1)
107
+ if self.in_channels != self.out_channels:
108
+ if self.use_conv_shortcut:
109
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
110
+ out_channels,
111
+ kernel_size=3,
112
+ stride=1,
113
+ padding=1)
114
+ else:
115
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
116
+ out_channels,
117
+ kernel_size=1,
118
+ stride=1,
119
+ padding=0)
120
+
121
+ def forward(self, x, temb):
122
+ h = x
123
+ h = self.norm1(h)
124
+ h = nonlinearity(h)
125
+ h = self.conv1(h)
126
+
127
+ if temb is not None:
128
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
129
+
130
+ h = self.norm2(h)
131
+ h = nonlinearity(h)
132
+ h = self.dropout(h)
133
+ h = self.conv2(h)
134
+
135
+ if self.in_channels != self.out_channels:
136
+ if self.use_conv_shortcut:
137
+ x = self.conv_shortcut(x)
138
+ else:
139
+ x = self.nin_shortcut(x)
140
+
141
+ return x+h
142
+
143
+
144
+ class LinAttnBlock(LinearAttention):
145
+ """to match AttnBlock usage"""
146
+ def __init__(self, in_channels):
147
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
148
+
149
+
150
+ class AttnBlock(nn.Module):
151
+ def __init__(self, in_channels):
152
+ super().__init__()
153
+ self.in_channels = in_channels
154
+
155
+ self.norm = Normalize(in_channels)
156
+ self.q = torch.nn.Conv2d(in_channels,
157
+ in_channels,
158
+ kernel_size=1,
159
+ stride=1,
160
+ padding=0)
161
+ self.k = torch.nn.Conv2d(in_channels,
162
+ in_channels,
163
+ kernel_size=1,
164
+ stride=1,
165
+ padding=0)
166
+ self.v = torch.nn.Conv2d(in_channels,
167
+ in_channels,
168
+ kernel_size=1,
169
+ stride=1,
170
+ padding=0)
171
+ self.proj_out = torch.nn.Conv2d(in_channels,
172
+ in_channels,
173
+ kernel_size=1,
174
+ stride=1,
175
+ padding=0)
176
+
177
+
178
+ def forward(self, x):
179
+ h_ = x
180
+ h_ = self.norm(h_)
181
+ q = self.q(h_)
182
+ k = self.k(h_)
183
+ v = self.v(h_)
184
+
185
+ # compute attention
186
+ b,c,h,w = q.shape
187
+ q = q.reshape(b,c,h*w)
188
+ q = q.permute(0,2,1) # b,hw,c
189
+ k = k.reshape(b,c,h*w) # b,c,hw
190
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
191
+ w_ = w_ * (int(c)**(-0.5))
192
+ w_ = torch.nn.functional.softmax(w_, dim=2)
193
+
194
+ # attend to values
195
+ v = v.reshape(b,c,h*w)
196
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
197
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
198
+ h_ = h_.reshape(b,c,h,w)
199
+
200
+ h_ = self.proj_out(h_)
201
+
202
+ return x+h_
203
+
204
+
205
+ def make_attn(in_channels, attn_type="vanilla"):
206
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
207
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
208
+ if attn_type == "vanilla":
209
+ return AttnBlock(in_channels)
210
+ elif attn_type == "none":
211
+ return nn.Identity(in_channels)
212
+ else:
213
+ return LinAttnBlock(in_channels)
214
+
215
+
216
+ class Model(nn.Module):
217
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
218
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
219
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
220
+ super().__init__()
221
+ if use_linear_attn: attn_type = "linear"
222
+ self.ch = ch
223
+ self.temb_ch = self.ch*4
224
+ self.num_resolutions = len(ch_mult)
225
+ self.num_res_blocks = num_res_blocks
226
+ self.resolution = resolution
227
+ self.in_channels = in_channels
228
+
229
+ self.use_timestep = use_timestep
230
+ if self.use_timestep:
231
+ # timestep embedding
232
+ self.temb = nn.Module()
233
+ self.temb.dense = nn.ModuleList([
234
+ torch.nn.Linear(self.ch,
235
+ self.temb_ch),
236
+ torch.nn.Linear(self.temb_ch,
237
+ self.temb_ch),
238
+ ])
239
+
240
+ # downsampling
241
+ self.conv_in = torch.nn.Conv2d(in_channels,
242
+ self.ch,
243
+ kernel_size=3,
244
+ stride=1,
245
+ padding=1)
246
+
247
+ curr_res = resolution
248
+ in_ch_mult = (1,)+tuple(ch_mult)
249
+ self.down = nn.ModuleList()
250
+ for i_level in range(self.num_resolutions):
251
+ block = nn.ModuleList()
252
+ attn = nn.ModuleList()
253
+ block_in = ch*in_ch_mult[i_level]
254
+ block_out = ch*ch_mult[i_level]
255
+ for i_block in range(self.num_res_blocks):
256
+ block.append(ResnetBlock(in_channels=block_in,
257
+ out_channels=block_out,
258
+ temb_channels=self.temb_ch,
259
+ dropout=dropout))
260
+ block_in = block_out
261
+ if curr_res in attn_resolutions:
262
+ attn.append(make_attn(block_in, attn_type=attn_type))
263
+ down = nn.Module()
264
+ down.block = block
265
+ down.attn = attn
266
+ if i_level != self.num_resolutions-1:
267
+ down.downsample = Downsample(block_in, resamp_with_conv)
268
+ curr_res = curr_res // 2
269
+ self.down.append(down)
270
+
271
+ # middle
272
+ self.mid = nn.Module()
273
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
274
+ out_channels=block_in,
275
+ temb_channels=self.temb_ch,
276
+ dropout=dropout)
277
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
278
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
279
+ out_channels=block_in,
280
+ temb_channels=self.temb_ch,
281
+ dropout=dropout)
282
+
283
+ # upsampling
284
+ self.up = nn.ModuleList()
285
+ for i_level in reversed(range(self.num_resolutions)):
286
+ block = nn.ModuleList()
287
+ attn = nn.ModuleList()
288
+ block_out = ch*ch_mult[i_level]
289
+ skip_in = ch*ch_mult[i_level]
290
+ for i_block in range(self.num_res_blocks+1):
291
+ if i_block == self.num_res_blocks:
292
+ skip_in = ch*in_ch_mult[i_level]
293
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
294
+ out_channels=block_out,
295
+ temb_channels=self.temb_ch,
296
+ dropout=dropout))
297
+ block_in = block_out
298
+ if curr_res in attn_resolutions:
299
+ attn.append(make_attn(block_in, attn_type=attn_type))
300
+ up = nn.Module()
301
+ up.block = block
302
+ up.attn = attn
303
+ if i_level != 0:
304
+ up.upsample = Upsample(block_in, resamp_with_conv)
305
+ curr_res = curr_res * 2
306
+ self.up.insert(0, up) # prepend to get consistent order
307
+
308
+ # end
309
+ self.norm_out = Normalize(block_in)
310
+ self.conv_out = torch.nn.Conv2d(block_in,
311
+ out_ch,
312
+ kernel_size=3,
313
+ stride=1,
314
+ padding=1)
315
+
316
+ def forward(self, x, t=None, context=None):
317
+ #assert x.shape[2] == x.shape[3] == self.resolution
318
+ if context is not None:
319
+ # assume aligned context, cat along channel axis
320
+ x = torch.cat((x, context), dim=1)
321
+ if self.use_timestep:
322
+ # timestep embedding
323
+ assert t is not None
324
+ temb = get_timestep_embedding(t, self.ch)
325
+ temb = self.temb.dense[0](temb)
326
+ temb = nonlinearity(temb)
327
+ temb = self.temb.dense[1](temb)
328
+ else:
329
+ temb = None
330
+
331
+ # downsampling
332
+ hs = [self.conv_in(x)]
333
+ for i_level in range(self.num_resolutions):
334
+ for i_block in range(self.num_res_blocks):
335
+ h = self.down[i_level].block[i_block](hs[-1], temb)
336
+ if len(self.down[i_level].attn) > 0:
337
+ h = self.down[i_level].attn[i_block](h)
338
+ hs.append(h)
339
+ if i_level != self.num_resolutions-1:
340
+ hs.append(self.down[i_level].downsample(hs[-1]))
341
+
342
+ # middle
343
+ h = hs[-1]
344
+ h = self.mid.block_1(h, temb)
345
+ h = self.mid.attn_1(h)
346
+ h = self.mid.block_2(h, temb)
347
+
348
+ # upsampling
349
+ for i_level in reversed(range(self.num_resolutions)):
350
+ for i_block in range(self.num_res_blocks+1):
351
+ h = self.up[i_level].block[i_block](
352
+ torch.cat([h, hs.pop()], dim=1), temb)
353
+ if len(self.up[i_level].attn) > 0:
354
+ h = self.up[i_level].attn[i_block](h)
355
+ if i_level != 0:
356
+ h = self.up[i_level].upsample(h)
357
+
358
+ # end
359
+ h = self.norm_out(h)
360
+ h = nonlinearity(h)
361
+ h = self.conv_out(h)
362
+ return h
363
+
364
+ def get_last_layer(self):
365
+ return self.conv_out.weight
366
+
367
+
368
+ class Encoder(nn.Module):
369
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
370
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
371
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
372
+ **ignore_kwargs):
373
+ super().__init__()
374
+ if use_linear_attn: attn_type = "linear"
375
+ self.ch = ch
376
+ self.temb_ch = 0
377
+ self.num_resolutions = len(ch_mult)
378
+ self.num_res_blocks = num_res_blocks
379
+ self.resolution = resolution
380
+ self.in_channels = in_channels
381
+
382
+ # downsampling
383
+ self.conv_in = torch.nn.Conv2d(in_channels,
384
+ self.ch,
385
+ kernel_size=3,
386
+ stride=1,
387
+ padding=1)
388
+
389
+ curr_res = resolution
390
+ in_ch_mult = (1,)+tuple(ch_mult)
391
+ self.in_ch_mult = in_ch_mult
392
+ self.down = nn.ModuleList()
393
+ for i_level in range(self.num_resolutions):
394
+ block = nn.ModuleList()
395
+ attn = nn.ModuleList()
396
+ block_in = ch*in_ch_mult[i_level]
397
+ block_out = ch*ch_mult[i_level]
398
+ for i_block in range(self.num_res_blocks):
399
+ block.append(ResnetBlock(in_channels=block_in,
400
+ out_channels=block_out,
401
+ temb_channels=self.temb_ch,
402
+ dropout=dropout))
403
+ block_in = block_out
404
+ if curr_res in attn_resolutions:
405
+ attn.append(make_attn(block_in, attn_type=attn_type))
406
+ down = nn.Module()
407
+ down.block = block
408
+ down.attn = attn
409
+ if i_level != self.num_resolutions-1:
410
+ down.downsample = Downsample(block_in, resamp_with_conv)
411
+ curr_res = curr_res // 2
412
+ self.down.append(down)
413
+
414
+ # middle
415
+ self.mid = nn.Module()
416
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
417
+ out_channels=block_in,
418
+ temb_channels=self.temb_ch,
419
+ dropout=dropout)
420
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
421
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
422
+ out_channels=block_in,
423
+ temb_channels=self.temb_ch,
424
+ dropout=dropout)
425
+
426
+ # end
427
+ self.norm_out = Normalize(block_in)
428
+ self.conv_out = torch.nn.Conv2d(block_in,
429
+ 2*z_channels if double_z else z_channels,
430
+ kernel_size=3,
431
+ stride=1,
432
+ padding=1)
433
+
434
+ def forward(self, x):
435
+ # timestep embedding
436
+ temb = None
437
+
438
+ # downsampling
439
+ hs = [self.conv_in(x)]
440
+ for i_level in range(self.num_resolutions):
441
+ for i_block in range(self.num_res_blocks):
442
+ h = self.down[i_level].block[i_block](hs[-1], temb)
443
+ if len(self.down[i_level].attn) > 0:
444
+ h = self.down[i_level].attn[i_block](h)
445
+ hs.append(h)
446
+ if i_level != self.num_resolutions-1:
447
+ hs.append(self.down[i_level].downsample(hs[-1]))
448
+
449
+ # middle
450
+ h = hs[-1]
451
+ h = self.mid.block_1(h, temb)
452
+ h = self.mid.attn_1(h)
453
+ h = self.mid.block_2(h, temb)
454
+
455
+ # end
456
+ h = self.norm_out(h)
457
+ h = nonlinearity(h)
458
+ h = self.conv_out(h)
459
+ return h
460
+
461
+
462
+ class Decoder(nn.Module):
463
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
464
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
465
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
466
+ attn_type="vanilla", **ignorekwargs):
467
+ super().__init__()
468
+ if use_linear_attn: attn_type = "linear"
469
+ self.ch = ch
470
+ self.temb_ch = 0
471
+ self.num_resolutions = len(ch_mult)
472
+ self.num_res_blocks = num_res_blocks
473
+ self.resolution = resolution
474
+ self.in_channels = in_channels
475
+ self.give_pre_end = give_pre_end
476
+ self.tanh_out = tanh_out
477
+
478
+ # compute in_ch_mult, block_in and curr_res at lowest res
479
+ in_ch_mult = (1,)+tuple(ch_mult)
480
+ block_in = ch*ch_mult[self.num_resolutions-1]
481
+ curr_res = resolution // 2**(self.num_resolutions-1)
482
+ self.z_shape = (1,z_channels,curr_res,curr_res)
483
+ print("Working with z of shape {} = {} dimensions.".format(
484
+ self.z_shape, np.prod(self.z_shape)))
485
+
486
+ # z to block_in
487
+ self.conv_in = torch.nn.Conv2d(z_channels,
488
+ block_in,
489
+ kernel_size=3,
490
+ stride=1,
491
+ padding=1)
492
+
493
+ # middle
494
+ self.mid = nn.Module()
495
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
496
+ out_channels=block_in,
497
+ temb_channels=self.temb_ch,
498
+ dropout=dropout)
499
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
500
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
501
+ out_channels=block_in,
502
+ temb_channels=self.temb_ch,
503
+ dropout=dropout)
504
+
505
+ # upsampling
506
+ self.up = nn.ModuleList()
507
+ for i_level in reversed(range(self.num_resolutions)):
508
+ block = nn.ModuleList()
509
+ attn = nn.ModuleList()
510
+ block_out = ch*ch_mult[i_level]
511
+ for i_block in range(self.num_res_blocks+1):
512
+ block.append(ResnetBlock(in_channels=block_in,
513
+ out_channels=block_out,
514
+ temb_channels=self.temb_ch,
515
+ dropout=dropout))
516
+ block_in = block_out
517
+ if curr_res in attn_resolutions:
518
+ attn.append(make_attn(block_in, attn_type=attn_type))
519
+ up = nn.Module()
520
+ up.block = block
521
+ up.attn = attn
522
+ if i_level != 0:
523
+ up.upsample = Upsample(block_in, resamp_with_conv)
524
+ curr_res = curr_res * 2
525
+ self.up.insert(0, up) # prepend to get consistent order
526
+
527
+ # end
528
+ self.norm_out = Normalize(block_in)
529
+ self.conv_out = torch.nn.Conv2d(block_in,
530
+ out_ch,
531
+ kernel_size=3,
532
+ stride=1,
533
+ padding=1)
534
+
535
+ def forward(self, z):
536
+ #assert z.shape[1:] == self.z_shape[1:]
537
+ self.last_z_shape = z.shape
538
+
539
+ # timestep embedding
540
+ temb = None
541
+
542
+ # z to block_in
543
+ h = self.conv_in(z)
544
+
545
+ # middle
546
+ h = self.mid.block_1(h, temb)
547
+ h = self.mid.attn_1(h)
548
+ h = self.mid.block_2(h, temb)
549
+
550
+ # upsampling
551
+ for i_level in reversed(range(self.num_resolutions)):
552
+ for i_block in range(self.num_res_blocks+1):
553
+ h = self.up[i_level].block[i_block](h, temb)
554
+ if len(self.up[i_level].attn) > 0:
555
+ h = self.up[i_level].attn[i_block](h)
556
+ if i_level != 0:
557
+ h = self.up[i_level].upsample(h)
558
+
559
+ # end
560
+ if self.give_pre_end:
561
+ return h
562
+
563
+ h = self.norm_out(h)
564
+ h = nonlinearity(h)
565
+ h = self.conv_out(h)
566
+ if self.tanh_out:
567
+ h = torch.tanh(h)
568
+ return h
569
+
570
+
571
+ class SimpleDecoder(nn.Module):
572
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
573
+ super().__init__()
574
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
575
+ ResnetBlock(in_channels=in_channels,
576
+ out_channels=2 * in_channels,
577
+ temb_channels=0, dropout=0.0),
578
+ ResnetBlock(in_channels=2 * in_channels,
579
+ out_channels=4 * in_channels,
580
+ temb_channels=0, dropout=0.0),
581
+ ResnetBlock(in_channels=4 * in_channels,
582
+ out_channels=2 * in_channels,
583
+ temb_channels=0, dropout=0.0),
584
+ nn.Conv2d(2*in_channels, in_channels, 1),
585
+ Upsample(in_channels, with_conv=True)])
586
+ # end
587
+ self.norm_out = Normalize(in_channels)
588
+ self.conv_out = torch.nn.Conv2d(in_channels,
589
+ out_channels,
590
+ kernel_size=3,
591
+ stride=1,
592
+ padding=1)
593
+
594
+ def forward(self, x):
595
+ for i, layer in enumerate(self.model):
596
+ if i in [1,2,3]:
597
+ x = layer(x, None)
598
+ else:
599
+ x = layer(x)
600
+
601
+ h = self.norm_out(x)
602
+ h = nonlinearity(h)
603
+ x = self.conv_out(h)
604
+ return x
605
+
606
+
607
+ class UpsampleDecoder(nn.Module):
608
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
609
+ ch_mult=(2,2), dropout=0.0):
610
+ super().__init__()
611
+ # upsampling
612
+ self.temb_ch = 0
613
+ self.num_resolutions = len(ch_mult)
614
+ self.num_res_blocks = num_res_blocks
615
+ block_in = in_channels
616
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
617
+ self.res_blocks = nn.ModuleList()
618
+ self.upsample_blocks = nn.ModuleList()
619
+ for i_level in range(self.num_resolutions):
620
+ res_block = []
621
+ block_out = ch * ch_mult[i_level]
622
+ for i_block in range(self.num_res_blocks + 1):
623
+ res_block.append(ResnetBlock(in_channels=block_in,
624
+ out_channels=block_out,
625
+ temb_channels=self.temb_ch,
626
+ dropout=dropout))
627
+ block_in = block_out
628
+ self.res_blocks.append(nn.ModuleList(res_block))
629
+ if i_level != self.num_resolutions - 1:
630
+ self.upsample_blocks.append(Upsample(block_in, True))
631
+ curr_res = curr_res * 2
632
+
633
+ # end
634
+ self.norm_out = Normalize(block_in)
635
+ self.conv_out = torch.nn.Conv2d(block_in,
636
+ out_channels,
637
+ kernel_size=3,
638
+ stride=1,
639
+ padding=1)
640
+
641
+ def forward(self, x):
642
+ # upsampling
643
+ h = x
644
+ for k, i_level in enumerate(range(self.num_resolutions)):
645
+ for i_block in range(self.num_res_blocks + 1):
646
+ h = self.res_blocks[i_level][i_block](h, None)
647
+ if i_level != self.num_resolutions - 1:
648
+ h = self.upsample_blocks[k](h)
649
+ h = self.norm_out(h)
650
+ h = nonlinearity(h)
651
+ h = self.conv_out(h)
652
+ return h
653
+
654
+
655
+ class LatentRescaler(nn.Module):
656
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
657
+ super().__init__()
658
+ # residual block, interpolate, residual block
659
+ self.factor = factor
660
+ self.conv_in = nn.Conv2d(in_channels,
661
+ mid_channels,
662
+ kernel_size=3,
663
+ stride=1,
664
+ padding=1)
665
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
666
+ out_channels=mid_channels,
667
+ temb_channels=0,
668
+ dropout=0.0) for _ in range(depth)])
669
+ self.attn = AttnBlock(mid_channels)
670
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
671
+ out_channels=mid_channels,
672
+ temb_channels=0,
673
+ dropout=0.0) for _ in range(depth)])
674
+
675
+ self.conv_out = nn.Conv2d(mid_channels,
676
+ out_channels,
677
+ kernel_size=1,
678
+ )
679
+
680
+ def forward(self, x):
681
+ x = self.conv_in(x)
682
+ for block in self.res_block1:
683
+ x = block(x, None)
684
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
685
+ x = self.attn(x)
686
+ for block in self.res_block2:
687
+ x = block(x, None)
688
+ x = self.conv_out(x)
689
+ return x
690
+
691
+
692
+ class MergedRescaleEncoder(nn.Module):
693
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
694
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
695
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
696
+ super().__init__()
697
+ intermediate_chn = ch * ch_mult[-1]
698
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
699
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
700
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
701
+ out_ch=None)
702
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
703
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
704
+
705
+ def forward(self, x):
706
+ x = self.encoder(x)
707
+ x = self.rescaler(x)
708
+ return x
709
+
710
+
711
+ class MergedRescaleDecoder(nn.Module):
712
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
713
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
714
+ super().__init__()
715
+ tmp_chn = z_channels*ch_mult[-1]
716
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
717
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
718
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
719
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
720
+ out_channels=tmp_chn, depth=rescale_module_depth)
721
+
722
+ def forward(self, x):
723
+ x = self.rescaler(x)
724
+ x = self.decoder(x)
725
+ return x
726
+
727
+
728
+ class Upsampler(nn.Module):
729
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
730
+ super().__init__()
731
+ assert out_size >= in_size
732
+ num_blocks = int(np.log2(out_size//in_size))+1
733
+ factor_up = 1.+ (out_size % in_size)
734
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
735
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
736
+ out_channels=in_channels)
737
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
738
+ attn_resolutions=[], in_channels=None, ch=in_channels,
739
+ ch_mult=[ch_mult for _ in range(num_blocks)])
740
+
741
+ def forward(self, x):
742
+ x = self.rescaler(x)
743
+ x = self.decoder(x)
744
+ return x
745
+
746
+
747
+ class Resize(nn.Module):
748
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
749
+ super().__init__()
750
+ self.with_conv = learned
751
+ self.mode = mode
752
+ if self.with_conv:
753
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
754
+ raise NotImplementedError()
755
+ assert in_channels is not None
756
+ # no asymmetric padding in torch conv, must do it ourselves
757
+ self.conv = torch.nn.Conv2d(in_channels,
758
+ in_channels,
759
+ kernel_size=4,
760
+ stride=2,
761
+ padding=1)
762
+
763
+ def forward(self, x, scale_factor=1.0):
764
+ if scale_factor==1.0:
765
+ return x
766
+ else:
767
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
768
+ return x
769
+
770
+ class FirstStagePostProcessor(nn.Module):
771
+
772
+ def __init__(self, ch_mult:list, in_channels,
773
+ pretrained_model:nn.Module=None,
774
+ reshape=False,
775
+ n_channels=None,
776
+ dropout=0.,
777
+ pretrained_config=None):
778
+ super().__init__()
779
+ if pretrained_config is None:
780
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
781
+ self.pretrained_model = pretrained_model
782
+ else:
783
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
784
+ self.instantiate_pretrained(pretrained_config)
785
+
786
+ self.do_reshape = reshape
787
+
788
+ if n_channels is None:
789
+ n_channels = self.pretrained_model.encoder.ch
790
+
791
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
792
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
793
+ stride=1,padding=1)
794
+
795
+ blocks = []
796
+ downs = []
797
+ ch_in = n_channels
798
+ for m in ch_mult:
799
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
800
+ ch_in = m * n_channels
801
+ downs.append(Downsample(ch_in, with_conv=False))
802
+
803
+ self.model = nn.ModuleList(blocks)
804
+ self.downsampler = nn.ModuleList(downs)
805
+
806
+
807
+ def instantiate_pretrained(self, config):
808
+ model = instantiate_from_config(config)
809
+ self.pretrained_model = model.eval()
810
+ # self.pretrained_model.train = False
811
+ for param in self.pretrained_model.parameters():
812
+ param.requires_grad = False
813
+
814
+
815
+ @torch.no_grad()
816
+ def encode_with_pretrained(self,x):
817
+ c = self.pretrained_model.encode(x)
818
+ if isinstance(c, DiagonalGaussianDistribution):
819
+ c = c.mode()
820
+ return c
821
+
822
+ def forward(self,x):
823
+ z_fs = self.encode_with_pretrained(x)
824
+ z = self.proj_norm(z_fs)
825
+ z = self.proj(z)
826
+ z = nonlinearity(z)
827
+
828
+ for submodel, downmodel in zip(self.model,self.downsampler):
829
+ z = submodel(z,temb=None)
830
+ z = downmodel(z)
831
+
832
+ if self.do_reshape:
833
+ z = rearrange(z,'b c h w -> b (h w) c')
834
+ return z
835
+
gligen/ldm/modules/diffusionmodules/normal_grounding_downsampler.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+
7
+
8
+
9
+ class GroundingDownsampler(nn.Module):
10
+ def __init__(self, resize_input=256, out_dim=8):
11
+ super().__init__()
12
+ self.resize_input = resize_input
13
+ self.out_dim = out_dim
14
+
15
+ self.layers = nn.Sequential(
16
+ nn.Conv2d(3,4,4,2,1),
17
+ nn.SiLU(),
18
+ nn.Conv2d(4,self.out_dim,4,2,1)
19
+ )
20
+
21
+ def forward(self, grounding_extra_input):
22
+
23
+ out = torch.nn.functional.interpolate(grounding_extra_input, (self.resize_input,self.resize_input), mode='bicubic')
24
+ out = self.layers(out)
25
+
26
+ assert out.shape[1] == self.out_dim
27
+ return out
28
+
29
+
gligen/ldm/modules/diffusionmodules/normal_grounding_net.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+ from ..attention import SelfAttention, FeedForward
7
+ from .convnext import convnext_tiny
8
+
9
+
10
+
11
+
12
+ class PositionNet(nn.Module):
13
+ def __init__(self, resize_input=448, out_dim=768):
14
+ super().__init__()
15
+ self.resize_input = resize_input
16
+ self.down_factor = 32 # determined by the convnext backbone
17
+ self.out_dim = out_dim
18
+ assert self.resize_input % self.down_factor == 0
19
+
20
+ self.convnext_tiny_backbone = convnext_tiny(pretrained=True)
21
+
22
+ self.num_tokens = (self.resize_input // self.down_factor) ** 2
23
+
24
+ convnext_feature_dim = 768
25
+ self.pos_embedding = nn.Parameter(torch.empty(1, self.num_tokens, convnext_feature_dim).normal_(std=0.02)) # from BERT
26
+
27
+ self.linears = nn.Sequential(
28
+ nn.Linear( convnext_feature_dim, 512),
29
+ nn.SiLU(),
30
+ nn.Linear( 512, 512),
31
+ nn.SiLU(),
32
+ nn.Linear(512, out_dim),
33
+ )
34
+
35
+ self.null_feature = torch.nn.Parameter(torch.zeros([convnext_feature_dim]))
36
+
37
+
38
+ def forward(self, normal, mask):
39
+ B = normal.shape[0]
40
+
41
+ # token from edge map
42
+ normal = torch.nn.functional.interpolate(normal, self.resize_input)
43
+ normal_feature = self.convnext_tiny_backbone(normal)
44
+ objs = normal_feature.reshape(B, -1, self.num_tokens)
45
+ objs = objs.permute(0, 2, 1) # N*Num_tokens*dim
46
+
47
+ # expand null token
48
+ null_objs = self.null_feature.view(1,1,-1)
49
+ null_objs = null_objs.repeat(B,self.num_tokens,1)
50
+
51
+ # mask replacing
52
+ mask = mask.view(-1,1,1)
53
+ objs = objs*mask + null_objs*(1-mask)
54
+
55
+ # add pos
56
+ objs = objs + self.pos_embedding
57
+
58
+ # fuse them
59
+ objs = self.linears(objs)
60
+
61
+ assert objs.shape == torch.Size([B,self.num_tokens,self.out_dim])
62
+ return objs
63
+
64
+
65
+
gligen/ldm/modules/diffusionmodules/openaimodel.py ADDED
@@ -0,0 +1,562 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import abstractmethod
2
+ from functools import partial
3
+ import math
4
+
5
+ import numpy as np
6
+ import random
7
+ import torch as th
8
+ import torch.nn as nn
9
+ import torch.nn.functional as F
10
+
11
+ from ldm.modules.diffusionmodules.util import (
12
+ conv_nd,
13
+ linear,
14
+ avg_pool_nd,
15
+ zero_module,
16
+ normalization,
17
+ timestep_embedding,
18
+ )
19
+ from ldm.modules.attention import SpatialTransformer
20
+ # from .positionnet import PositionNet
21
+ from torch.utils import checkpoint
22
+ from ldm.util import instantiate_from_config
23
+ from copy import deepcopy
24
+
25
+ class TimestepBlock(nn.Module):
26
+ """
27
+ Any module where forward() takes timestep embeddings as a second argument.
28
+ """
29
+
30
+ @abstractmethod
31
+ def forward(self, x, emb):
32
+ """
33
+ Apply the module to `x` given `emb` timestep embeddings.
34
+ """
35
+
36
+
37
+ class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
38
+ """
39
+ A sequential module that passes timestep embeddings to the children that
40
+ support it as an extra input.
41
+ """
42
+
43
+ def forward(self, x, emb, context, objs,t):
44
+ probs = []
45
+ self_prob_list = []
46
+
47
+ for layer in self:
48
+ if isinstance(layer, TimestepBlock):
49
+ x = layer(x, emb)
50
+ elif isinstance(layer, SpatialTransformer):
51
+ x, prob, self_prob = layer(x, context, objs,t)
52
+ probs.append(prob)
53
+ self_prob_list.append(self_prob)
54
+ else:
55
+ x = layer(x)
56
+ return x, probs, self_prob_list
57
+
58
+
59
+ class Upsample(nn.Module):
60
+ """
61
+ An upsampling layer with an optional convolution.
62
+ :param channels: channels in the inputs and outputs.
63
+ :param use_conv: a bool determining if a convolution is applied.
64
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
65
+ upsampling occurs in the inner-two dimensions.
66
+ """
67
+
68
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
69
+ super().__init__()
70
+ self.channels = channels
71
+ self.out_channels = out_channels or channels
72
+ self.use_conv = use_conv
73
+ self.dims = dims
74
+ if use_conv:
75
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
76
+
77
+ def forward(self, x):
78
+ assert x.shape[1] == self.channels
79
+ if self.dims == 3:
80
+ x = F.interpolate(
81
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
82
+ )
83
+ else:
84
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
85
+ if self.use_conv:
86
+ x = self.conv(x)
87
+ return x
88
+
89
+
90
+
91
+
92
+ class Downsample(nn.Module):
93
+ """
94
+ A downsampling layer with an optional convolution.
95
+ :param channels: channels in the inputs and outputs.
96
+ :param use_conv: a bool determining if a convolution is applied.
97
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
98
+ downsampling occurs in the inner-two dimensions.
99
+ """
100
+
101
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
102
+ super().__init__()
103
+ self.channels = channels
104
+ self.out_channels = out_channels or channels
105
+ self.use_conv = use_conv
106
+ self.dims = dims
107
+ stride = 2 if dims != 3 else (1, 2, 2)
108
+ if use_conv:
109
+ self.op = conv_nd(
110
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
111
+ )
112
+ else:
113
+ assert self.channels == self.out_channels
114
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
115
+
116
+ def forward(self, x):
117
+ assert x.shape[1] == self.channels
118
+ return self.op(x)
119
+
120
+
121
+ class ResBlock(TimestepBlock):
122
+ """
123
+ A residual block that can optionally change the number of channels.
124
+ :param channels: the number of input channels.
125
+ :param emb_channels: the number of timestep embedding channels.
126
+ :param dropout: the rate of dropout.
127
+ :param out_channels: if specified, the number of out channels.
128
+ :param use_conv: if True and out_channels is specified, use a spatial
129
+ convolution instead of a smaller 1x1 convolution to change the
130
+ channels in the skip connection.
131
+ :param dims: determines if the signal is 1D, 2D, or 3D.
132
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
133
+ :param up: if True, use this block for upsampling.
134
+ :param down: if True, use this block for downsampling.
135
+ """
136
+
137
+ def __init__(
138
+ self,
139
+ channels,
140
+ emb_channels,
141
+ dropout,
142
+ out_channels=None,
143
+ use_conv=False,
144
+ use_scale_shift_norm=False,
145
+ dims=2,
146
+ use_checkpoint=False,
147
+ up=False,
148
+ down=False,
149
+ ):
150
+ super().__init__()
151
+ self.channels = channels
152
+ self.emb_channels = emb_channels
153
+ self.dropout = dropout
154
+ self.out_channels = out_channels or channels
155
+ self.use_conv = use_conv
156
+ self.use_checkpoint = use_checkpoint
157
+ self.use_scale_shift_norm = use_scale_shift_norm
158
+
159
+ self.in_layers = nn.Sequential(
160
+ normalization(channels),
161
+ nn.SiLU(),
162
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
163
+ )
164
+
165
+ self.updown = up or down
166
+
167
+ if up:
168
+ self.h_upd = Upsample(channels, False, dims)
169
+ self.x_upd = Upsample(channels, False, dims)
170
+ elif down:
171
+ self.h_upd = Downsample(channels, False, dims)
172
+ self.x_upd = Downsample(channels, False, dims)
173
+ else:
174
+ self.h_upd = self.x_upd = nn.Identity()
175
+
176
+ self.emb_layers = nn.Sequential(
177
+ nn.SiLU(),
178
+ linear(
179
+ emb_channels,
180
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
181
+ ),
182
+ )
183
+ self.out_layers = nn.Sequential(
184
+ normalization(self.out_channels),
185
+ nn.SiLU(),
186
+ nn.Dropout(p=dropout),
187
+ zero_module(
188
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
189
+ ),
190
+ )
191
+
192
+ if self.out_channels == channels:
193
+ self.skip_connection = nn.Identity()
194
+ elif use_conv:
195
+ self.skip_connection = conv_nd(
196
+ dims, channels, self.out_channels, 3, padding=1
197
+ )
198
+ else:
199
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
200
+
201
+ def forward(self, x, emb):
202
+ """
203
+ Apply the block to a Tensor, conditioned on a timestep embedding.
204
+ :param x: an [N x C x ...] Tensor of features.
205
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
206
+ :return: an [N x C x ...] Tensor of outputs.
207
+ """
208
+ # return checkpoint(
209
+ # self._forward, (x, emb), self.parameters(), self.use_checkpoint
210
+ # )
211
+ if self.use_checkpoint and x.requires_grad:
212
+ return checkpoint.checkpoint(self._forward, x, emb )
213
+ else:
214
+ return self._forward(x, emb)
215
+
216
+
217
+ def _forward(self, x, emb):
218
+ if self.updown:
219
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
220
+ h = in_rest(x)
221
+ h = self.h_upd(h)
222
+ x = self.x_upd(x)
223
+ h = in_conv(h)
224
+ else:
225
+ h = self.in_layers(x)
226
+ emb_out = self.emb_layers(emb).type(h.dtype)
227
+ while len(emb_out.shape) < len(h.shape):
228
+ emb_out = emb_out[..., None]
229
+ if self.use_scale_shift_norm:
230
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
231
+ scale, shift = th.chunk(emb_out, 2, dim=1)
232
+ h = out_norm(h) * (1 + scale) + shift
233
+ h = out_rest(h)
234
+ else:
235
+ h = h + emb_out
236
+ h = self.out_layers(h)
237
+ return self.skip_connection(x) + h
238
+
239
+
240
+
241
+
242
+ class UNetModel(nn.Module):
243
+ def __init__(
244
+ self,
245
+ image_size,
246
+ in_channels,
247
+ model_channels,
248
+ out_channels,
249
+ num_res_blocks,
250
+ attention_resolutions,
251
+ dropout=0,
252
+ channel_mult=(1, 2, 4, 8),
253
+ conv_resample=True,
254
+ dims=2,
255
+ use_checkpoint=False,
256
+ num_heads=8,
257
+ use_scale_shift_norm=False,
258
+ transformer_depth=1,
259
+ positive_len = 768,
260
+ context_dim=None,
261
+ fuser_type = None,
262
+ is_inpaint = False,
263
+ is_style = False,
264
+ grounding_downsampler = None,
265
+
266
+
267
+ ):
268
+ super().__init__()
269
+
270
+ self.image_size = image_size
271
+ self.in_channels = in_channels
272
+ self.model_channels = model_channels
273
+ self.out_channels = out_channels
274
+ self.num_res_blocks = num_res_blocks
275
+ self.attention_resolutions = attention_resolutions
276
+ self.dropout = dropout
277
+ self.channel_mult = channel_mult
278
+ self.conv_resample = conv_resample
279
+ self.use_checkpoint = use_checkpoint
280
+ self.num_heads = num_heads
281
+ self.context_dim = context_dim
282
+ self.fuser_type = fuser_type
283
+ self.is_inpaint = is_inpaint
284
+ self.positive_len = positive_len
285
+ assert fuser_type in ["gatedSA","gatedSA2","gatedCA"]
286
+
287
+ self.grounding_tokenizer_input = None # set externally
288
+
289
+
290
+ time_embed_dim = model_channels * 4
291
+ self.time_embed = nn.Sequential(
292
+ linear(model_channels, time_embed_dim),
293
+ nn.SiLU(),
294
+ linear(time_embed_dim, time_embed_dim),
295
+ )
296
+
297
+
298
+
299
+ self.downsample_net = None
300
+ self.additional_channel_from_downsampler = 0
301
+ self.first_conv_type = "SD"
302
+ self.first_conv_restorable = True
303
+ if grounding_downsampler is not None:
304
+ self.downsample_net = instantiate_from_config(grounding_downsampler)
305
+ self.additional_channel_from_downsampler = self.downsample_net.out_dim
306
+ self.first_conv_type = "GLIGEN"
307
+
308
+ if is_inpaint:
309
+ # The new added channels are: masked image (encoded image) and mask, which is 4+1
310
+ in_c = in_channels+self.additional_channel_from_downsampler+in_channels+1
311
+ self.first_conv_restorable = False # in inpaint; You must use extra channels to take in masked real image
312
+ else:
313
+ in_c = in_channels+self.additional_channel_from_downsampler
314
+ self.input_blocks = nn.ModuleList([TimestepEmbedSequential(conv_nd(dims, in_c, model_channels, 3, padding=1))])
315
+
316
+
317
+ input_block_chans = [model_channels]
318
+ ch = model_channels
319
+ ds = 1
320
+
321
+ # = = = = = = = = = = = = = = = = = = = = Down Branch = = = = = = = = = = = = = = = = = = = = #
322
+ for level, mult in enumerate(channel_mult):
323
+ for _ in range(num_res_blocks):
324
+ layers = [ ResBlock(ch,
325
+ time_embed_dim,
326
+ dropout,
327
+ out_channels=mult * model_channels,
328
+ dims=dims,
329
+ use_checkpoint=use_checkpoint,
330
+ use_scale_shift_norm=use_scale_shift_norm,) ]
331
+
332
+ ch = mult * model_channels
333
+ if ds in attention_resolutions:
334
+ dim_head = ch // num_heads
335
+ layers.append(SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint))
336
+
337
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
338
+ input_block_chans.append(ch)
339
+
340
+ if level != len(channel_mult) - 1: # will not go to this downsample branch in the last feature
341
+ out_ch = ch
342
+ self.input_blocks.append( TimestepEmbedSequential( Downsample(ch, conv_resample, dims=dims, out_channels=out_ch ) ) )
343
+ ch = out_ch
344
+ input_block_chans.append(ch)
345
+ ds *= 2
346
+ dim_head = ch // num_heads
347
+
348
+ # self.input_blocks = [ C | RT RT D | RT RT D | RT RT D | R R ]
349
+
350
+
351
+ # = = = = = = = = = = = = = = = = = = = = BottleNeck = = = = = = = = = = = = = = = = = = = = #
352
+
353
+ self.middle_block = TimestepEmbedSequential(
354
+ ResBlock(ch,
355
+ time_embed_dim,
356
+ dropout,
357
+ dims=dims,
358
+ use_checkpoint=use_checkpoint,
359
+ use_scale_shift_norm=use_scale_shift_norm),
360
+ SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint),
361
+ ResBlock(ch,
362
+ time_embed_dim,
363
+ dropout,
364
+ dims=dims,
365
+ use_checkpoint=use_checkpoint,
366
+ use_scale_shift_norm=use_scale_shift_norm))
367
+
368
+
369
+
370
+ # = = = = = = = = = = = = = = = = = = = = Up Branch = = = = = = = = = = = = = = = = = = = = #
371
+
372
+
373
+ self.output_blocks = nn.ModuleList([])
374
+ for level, mult in list(enumerate(channel_mult))[::-1]:
375
+ for i in range(num_res_blocks + 1):
376
+ ich = input_block_chans.pop()
377
+ layers = [ ResBlock(ch + ich,
378
+ time_embed_dim,
379
+ dropout,
380
+ out_channels=model_channels * mult,
381
+ dims=dims,
382
+ use_checkpoint=use_checkpoint,
383
+ use_scale_shift_norm=use_scale_shift_norm) ]
384
+ ch = model_channels * mult
385
+
386
+ if ds in attention_resolutions:
387
+ dim_head = ch // num_heads
388
+ layers.append( SpatialTransformer(ch, key_dim=context_dim, value_dim=context_dim, n_heads=num_heads, d_head=dim_head, depth=transformer_depth, fuser_type=fuser_type, use_checkpoint=use_checkpoint) )
389
+ if level and i == num_res_blocks:
390
+ out_ch = ch
391
+ layers.append( Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) )
392
+ ds //= 2
393
+
394
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
395
+
396
+
397
+ # self.output_blocks = [ R R RU | RT RT RTU | RT RT RTU | RT RT RT ]
398
+
399
+
400
+ self.out = nn.Sequential(
401
+ normalization(ch),
402
+ nn.SiLU(),
403
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
404
+ )
405
+
406
+ # self.position_net = instantiate_from_config(grounding_tokenizer)
407
+ from .text_grounding_net import PositionNet
408
+ self.position_net = PositionNet(in_dim=positive_len, out_dim=context_dim)
409
+
410
+
411
+
412
+
413
+
414
+ def restore_first_conv_from_SD(self):
415
+ if self.first_conv_restorable:
416
+ device = self.input_blocks[0][0].weight.device
417
+
418
+ SD_weights = th.load("gligen/SD_input_conv_weight_bias.pth")
419
+ self.GLIGEN_first_conv_state_dict = deepcopy(self.input_blocks[0][0].state_dict())
420
+
421
+ self.input_blocks[0][0] = conv_nd(2, 4, 320, 3, padding=1)
422
+ self.input_blocks[0][0].load_state_dict(SD_weights)
423
+ self.input_blocks[0][0].to(device)
424
+
425
+ self.first_conv_type = "SD"
426
+ else:
427
+ print("First conv layer is not restorable and skipped this process, probably because this is an inpainting model?")
428
+
429
+
430
+ def restore_first_conv_from_GLIGEN(self):
431
+ breakpoint() # TODO
432
+
433
+
434
+ def forward_position_net(self,input):
435
+ # import pdb; pdb.set_trace()
436
+ if ("boxes" in input):
437
+ boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"]
438
+ _ , self.max_box, _ = text_embeddings.shape
439
+ else:
440
+ dtype = input["x"].dtype
441
+ batch = input["x"].shape[0]
442
+ device = input["x"].device
443
+ boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
444
+ masks = th.zeros(batch, self.max_box).type(dtype).to(device)
445
+ text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
446
+ if self.training and random.random() < 0.1: # random drop for guidance
447
+ boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0
448
+
449
+ objs = self.position_net( boxes, masks, text_embeddings ) # B*N*C
450
+
451
+ return objs
452
+
453
+ def forward_position_net_with_image(self,input):
454
+
455
+ if ("boxes" in input):
456
+ boxes = input["boxes"]
457
+ masks = input["masks"]
458
+ text_masks = input["text_masks"]
459
+ image_masks = input["image_masks"]
460
+ text_embeddings = input["text_embeddings"]
461
+ image_embeddings = input["image_embeddings"]
462
+ _ , self.max_box, _ = text_embeddings.shape
463
+ else:
464
+ dtype = input["x"].dtype
465
+ batch = input["x"].shape[0]
466
+ device = input["x"].device
467
+ boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
468
+ masks = th.zeros(batch, self.max_box).type(dtype).to(device)
469
+ text_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
470
+ image_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
471
+ text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
472
+ image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
473
+
474
+ if self.training and random.random() < 0.1: # random drop for guidance
475
+ boxes = boxes*0
476
+ masks = masks*0
477
+ text_masks = text_masks*0
478
+ image_masks = image_masks*0
479
+ text_embeddings = text_embeddings*0
480
+ image_embeddings = image_embeddings*0
481
+
482
+ objs = self.position_net( boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings ) # B*N*C
483
+
484
+ return objs
485
+
486
+
487
+ def forward(self, input,unc=False):
488
+
489
+ if ("boxes" in input):
490
+ # grounding_input = input["grounding_input"]
491
+ boxes, masks, text_embeddings = input["boxes"], input["masks"], input["text_embeddings"]
492
+ _ , self.max_box, _ = text_embeddings.shape
493
+ else:
494
+ # Guidance null case
495
+ # grounding_input = self.grounding_tokenizer_input.get_null_input()
496
+ # boxes, masks, text_embeddings = input["boxes"]*0, input["masks"]*0, input["text_embeddings"]*0
497
+ dtype = input["x"].dtype
498
+ batch = input["x"].shape[0]
499
+ device = input["x"].device
500
+ boxes = th.zeros(batch, self.max_box, 4,).type(dtype).to(device)
501
+ masks = th.zeros(batch, self.max_box).type(dtype).to(device)
502
+ text_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
503
+ image_masks = th.zeros(batch, self.max_box).type(dtype).to(device)
504
+ text_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
505
+ image_embeddings = th.zeros(batch, self.max_box, self.positive_len).type(dtype).to(device)
506
+
507
+ if self.training and random.random() < 0.1 : # random drop for guidance
508
+ boxes, masks, text_embeddings = boxes*0, masks*0, text_embeddings*0
509
+
510
+ objs = self.position_net( boxes, masks, text_embeddings )
511
+
512
+ # Time embedding
513
+
514
+ t_emb = timestep_embedding(input["timesteps"], self.model_channels, repeat_only=False)
515
+ emb = self.time_embed(t_emb)
516
+
517
+ # input tensor
518
+ h = input["x"]
519
+ t = input["timesteps"]
520
+ if self.downsample_net != None and self.first_conv_type=="GLIGEN":
521
+ temp = self.downsample_net(input["grounding_extra_input"])
522
+ h = th.cat( [h,temp], dim=1 )
523
+ if self.is_inpaint:#self.inpaint_mode:
524
+ if self.downsample_net != None:
525
+ breakpoint() # TODO: think about this case
526
+ h = th.cat( [h, input["inpainting_extra_input"]], dim=1 )
527
+
528
+ # Text input
529
+ context = input["context"]
530
+
531
+ # Start forwarding
532
+ hs = []
533
+ probs_first = []
534
+ self_prob_list_first = []
535
+
536
+ for module in self.input_blocks:
537
+ h,prob, self_prob = module(h, emb, context, objs,t)
538
+ hs.append(h)
539
+ probs_first.append(prob)
540
+ self_prob_list_first.append(self_prob)
541
+
542
+ h,mid_prob, self_prob_list_second = self.middle_block(h, emb, context, objs,t)
543
+
544
+ probs_third = []
545
+ self_prob_list_third = []
546
+ for module in self.output_blocks:
547
+ h = th.cat([h, hs.pop()], dim=1)
548
+ h, prob, self_prob = module(h, emb, context, objs,t)
549
+ probs_third.append(prob)
550
+ self_prob_list_third.append(self_prob)
551
+
552
+ return self.out(h),probs_third , mid_prob, probs_first, self_prob_list_first, [self_prob_list_second], self_prob_list_third
553
+
554
+
555
+
556
+
557
+
558
+
559
+
560
+
561
+
562
+
gligen/ldm/modules/diffusionmodules/pseudo_example.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This is a high-level pseudo code for grounding net.
3
+
4
+ This class needs to tokenize grounding input into gronding tokens which
5
+ will be used in GatedAttenion layers.
6
+
7
+
8
+ class PositionNet(nn.Module):
9
+ def __init__(self, **kwargs):
10
+ super().__init__()
11
+
12
+ kwargs should be defined by model.grounding_tokenizer in config yaml file.
13
+
14
+ def forward(self, **kwargs):
15
+
16
+ kwargs should be the output of grounding_tokenizer_input network
17
+
18
+ return grounding_tokens # with shape: Batch * Num_Of_Token* Token_Channel_Dimension
19
+
20
+
21
+
22
+ """
23
+
24
+
25
+ # = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = #
26
+
27
+
28
+ """
29
+ This is a high-level pseudo code for downsampler.
30
+
31
+ This class needs to process input and output a spatial feature such that it will be
32
+ fed into the first conv layer.
33
+
34
+
35
+ class GroundingDownsampler(nn.Module):
36
+ def __init__(self, **kwargs):
37
+ super().__init__()
38
+
39
+ kwargs should be defined by model.grounding_downsampler in config yaml file.
40
+
41
+ you MUST define self.out_dim such that Unet knows add how many extra layers
42
+
43
+
44
+ def forward(self, **kwargs):
45
+
46
+ kwargs should be the output of grounding_downsampler_input network
47
+
48
+ return spatial_feature # with shape: Batch * self.out_dim * H *W (64*64 for SD)
49
+
50
+
51
+
52
+ """
gligen/ldm/modules/diffusionmodules/resnet.py ADDED
@@ -0,0 +1,337 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import Tensor
3
+ import torch.nn as nn
4
+ from typing import Type, Any, Callable, Union, List, Optional
5
+
6
+ try:
7
+ from torch.hub import load_state_dict_from_url
8
+ except ImportError:
9
+ from torch.utils.model_zoo import load_url as load_state_dict_from_url
10
+
11
+
12
+ model_urls = {
13
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-f37072fd.pth',
14
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-b627a593.pth',
15
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-0676ba61.pth',
16
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-63fe2227.pth',
17
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-394f9c45.pth',
18
+ 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
19
+ 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
20
+ 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
21
+ 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
22
+ }
23
+
24
+
25
+
26
+
27
+ def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
28
+ """3x3 convolution with padding"""
29
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
30
+ padding=dilation, groups=groups, bias=False, dilation=dilation)
31
+
32
+
33
+ def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
34
+ """1x1 convolution"""
35
+ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
36
+
37
+
38
+ class BasicBlock(nn.Module):
39
+ expansion: int = 1
40
+
41
+ def __init__(
42
+ self,
43
+ inplanes: int,
44
+ planes: int,
45
+ stride: int = 1,
46
+ downsample: Optional[nn.Module] = None,
47
+ groups: int = 1,
48
+ base_width: int = 64,
49
+ dilation: int = 1,
50
+ norm_layer: Optional[Callable[..., nn.Module]] = None
51
+ ) -> None:
52
+ super(BasicBlock, self).__init__()
53
+ if norm_layer is None:
54
+ norm_layer = nn.BatchNorm2d
55
+ if groups != 1 or base_width != 64:
56
+ raise ValueError('BasicBlock only supports groups=1 and base_width=64')
57
+ if dilation > 1:
58
+ raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
59
+ # Both self.conv1 and self.downsample layers downsample the input when stride != 1
60
+ self.conv1 = conv3x3(inplanes, planes, stride)
61
+ self.bn1 = norm_layer(planes)
62
+ self.relu = nn.ReLU(inplace=True)
63
+ self.conv2 = conv3x3(planes, planes)
64
+ self.bn2 = norm_layer(planes)
65
+ self.downsample = downsample
66
+ self.stride = stride
67
+
68
+ def forward(self, x: Tensor) -> Tensor:
69
+ identity = x
70
+
71
+ out = self.conv1(x)
72
+ out = self.bn1(out)
73
+ out = self.relu(out)
74
+
75
+ out = self.conv2(out)
76
+ out = self.bn2(out)
77
+
78
+ if self.downsample is not None:
79
+ identity = self.downsample(x)
80
+
81
+ out += identity
82
+ out = self.relu(out)
83
+
84
+ return out
85
+
86
+
87
+ class Bottleneck(nn.Module):
88
+ # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
89
+ # while original implementation places the stride at the first 1x1 convolution(self.conv1)
90
+ # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
91
+ # This variant is also known as ResNet V1.5 and improves accuracy according to
92
+ # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
93
+
94
+ expansion: int = 4
95
+
96
+ def __init__(
97
+ self,
98
+ inplanes: int,
99
+ planes: int,
100
+ stride: int = 1,
101
+ downsample: Optional[nn.Module] = None,
102
+ groups: int = 1,
103
+ base_width: int = 64,
104
+ dilation: int = 1,
105
+ norm_layer: Optional[Callable[..., nn.Module]] = None
106
+ ) -> None:
107
+ super(Bottleneck, self).__init__()
108
+ if norm_layer is None:
109
+ norm_layer = nn.BatchNorm2d
110
+ width = int(planes * (base_width / 64.)) * groups
111
+ # Both self.conv2 and self.downsample layers downsample the input when stride != 1
112
+ self.conv1 = conv1x1(inplanes, width)
113
+ self.bn1 = norm_layer(width)
114
+ self.conv2 = conv3x3(width, width, stride, groups, dilation)
115
+ self.bn2 = norm_layer(width)
116
+ self.conv3 = conv1x1(width, planes * self.expansion)
117
+ self.bn3 = norm_layer(planes * self.expansion)
118
+ self.relu = nn.ReLU(inplace=True)
119
+ self.downsample = downsample
120
+ self.stride = stride
121
+
122
+ def forward(self, x: Tensor) -> Tensor:
123
+ identity = x
124
+
125
+ out = self.conv1(x)
126
+ out = self.bn1(out)
127
+ out = self.relu(out)
128
+
129
+ out = self.conv2(out)
130
+ out = self.bn2(out)
131
+ out = self.relu(out)
132
+
133
+ out = self.conv3(out)
134
+ out = self.bn3(out)
135
+
136
+ if self.downsample is not None:
137
+ identity = self.downsample(x)
138
+
139
+ out += identity
140
+ out = self.relu(out)
141
+
142
+ return out
143
+
144
+
145
+ class ResNet(nn.Module):
146
+
147
+ def __init__(
148
+ self,
149
+ block: Type[Union[BasicBlock, Bottleneck]],
150
+ layers: List[int],
151
+ num_classes: int = 1000,
152
+ zero_init_residual: bool = False,
153
+ groups: int = 1,
154
+ width_per_group: int = 64,
155
+ replace_stride_with_dilation: Optional[List[bool]] = None,
156
+ norm_layer: Optional[Callable[..., nn.Module]] = None
157
+ ) -> None:
158
+ super(ResNet, self).__init__()
159
+ print("Please manually decide which layer as output")
160
+ if norm_layer is None:
161
+ norm_layer = nn.BatchNorm2d
162
+ self._norm_layer = norm_layer
163
+
164
+ self.inplanes = 64
165
+ self.dilation = 1
166
+ if replace_stride_with_dilation is None:
167
+ # each element in the tuple indicates if we should replace
168
+ # the 2x2 stride with a dilated convolution instead
169
+ replace_stride_with_dilation = [False, False, False]
170
+ if len(replace_stride_with_dilation) != 3:
171
+ raise ValueError("replace_stride_with_dilation should be None "
172
+ "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
173
+ self.groups = groups
174
+ self.base_width = width_per_group
175
+ self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
176
+ bias=False)
177
+ self.bn1 = norm_layer(self.inplanes)
178
+ self.relu = nn.ReLU(inplace=True)
179
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
180
+ self.layer1 = self._make_layer(block, 64, layers[0])
181
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
182
+ dilate=replace_stride_with_dilation[0])
183
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
184
+ dilate=replace_stride_with_dilation[1])
185
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
186
+ dilate=replace_stride_with_dilation[2])
187
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
188
+ #self.fc = nn.Linear(512 * block.expansion, num_classes)
189
+
190
+ for m in self.modules():
191
+ if isinstance(m, nn.Conv2d):
192
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
193
+ elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
194
+ nn.init.constant_(m.weight, 1)
195
+ nn.init.constant_(m.bias, 0)
196
+
197
+ # Zero-initialize the last BN in each residual branch,
198
+ # so that the residual branch starts with zeros, and each residual block behaves like an identity.
199
+ # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
200
+ if zero_init_residual:
201
+ for m in self.modules():
202
+ if isinstance(m, Bottleneck):
203
+ nn.init.constant_(m.bn3.weight, 0) # type: ignore[arg-type]
204
+ elif isinstance(m, BasicBlock):
205
+ nn.init.constant_(m.bn2.weight, 0) # type: ignore[arg-type]
206
+
207
+ def _make_layer(self, block: Type[Union[BasicBlock, Bottleneck]], planes: int, blocks: int,
208
+ stride: int = 1, dilate: bool = False) -> nn.Sequential:
209
+ norm_layer = self._norm_layer
210
+ downsample = None
211
+ previous_dilation = self.dilation
212
+ if dilate:
213
+ self.dilation *= stride
214
+ stride = 1
215
+ if stride != 1 or self.inplanes != planes * block.expansion:
216
+ downsample = nn.Sequential(
217
+ conv1x1(self.inplanes, planes * block.expansion, stride),
218
+ norm_layer(planes * block.expansion),
219
+ )
220
+
221
+ layers = []
222
+ layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
223
+ self.base_width, previous_dilation, norm_layer))
224
+ self.inplanes = planes * block.expansion
225
+ for _ in range(1, blocks):
226
+ layers.append(block(self.inplanes, planes, groups=self.groups,
227
+ base_width=self.base_width, dilation=self.dilation,
228
+ norm_layer=norm_layer))
229
+
230
+ return nn.Sequential(*layers)
231
+
232
+ def _forward_impl(self, x):
233
+ # The comment resolution is based on input size is 224*224
234
+ out = {}
235
+ x = self.conv1(x)
236
+ x = self.bn1(x)
237
+ x = self.relu(x)
238
+ x = self.maxpool(x)
239
+
240
+ out['f0'] = x # N*64*56*56
241
+
242
+ x = self.layer1(x)
243
+ out['f1'] = x # N*64*56*56
244
+
245
+ x = self.layer2(x)
246
+ out['f2'] = x # N*128*28*28
247
+
248
+ x = self.layer3(x)
249
+ out['f3'] = x # N*256*14*14
250
+
251
+ x = self.layer4(x)
252
+ out['f4'] = x # N*512*7*7
253
+ return x
254
+
255
+
256
+ # x = self.avgpool(x)
257
+ # x = torch.flatten(x, 1)
258
+ # out['penultimate'] = x # N*512
259
+
260
+ # x = self.fc(x)
261
+ # out['logits'] = x # N*1000
262
+
263
+ # return out
264
+
265
+ def forward(self, x):
266
+ return self._forward_impl(x)
267
+
268
+
269
+ def _resnet(
270
+ arch: str,
271
+ block: Type[Union[BasicBlock, Bottleneck]],
272
+ layers: List[int],
273
+ pretrained: bool,
274
+ progress: bool,
275
+ **kwargs: Any
276
+ ) -> ResNet:
277
+ model = ResNet(block, layers, **kwargs)
278
+ if pretrained:
279
+ state_dict = load_state_dict_from_url(model_urls[arch], progress=progress)
280
+ model.load_state_dict(state_dict, strict=False) # we remove fc, and only keep backbone
281
+ return model
282
+
283
+
284
+ def resnet18(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
285
+ r"""ResNet-18 model from
286
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
287
+
288
+ Args:
289
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
290
+ progress (bool): If True, displays a progress bar of the download to stderr
291
+ """
292
+ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs)
293
+
294
+
295
+ def resnet34(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
296
+ r"""ResNet-34 model from
297
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
298
+
299
+ Args:
300
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
301
+ progress (bool): If True, displays a progress bar of the download to stderr
302
+ """
303
+ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)
304
+
305
+
306
+ def resnet50(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
307
+ r"""ResNet-50 model from
308
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
309
+
310
+ Args:
311
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
312
+ progress (bool): If True, displays a progress bar of the download to stderr
313
+ """
314
+ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
315
+
316
+
317
+ def resnet101(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
318
+ r"""ResNet-101 model from
319
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
320
+
321
+ Args:
322
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
323
+ progress (bool): If True, displays a progress bar of the download to stderr
324
+ """
325
+ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
326
+
327
+
328
+ def resnet152(pretrained: bool = False, progress: bool = True, **kwargs: Any) -> ResNet:
329
+ r"""ResNet-152 model from
330
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_.
331
+
332
+ Args:
333
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
334
+ progress (bool): If True, displays a progress bar of the download to stderr
335
+ """
336
+ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, **kwargs)
337
+
gligen/ldm/modules/diffusionmodules/sem_grounding_downsampler.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+
7
+
8
+
9
+ class GroundingDownsampler(nn.Module):
10
+ def __init__(self, resize_input=256, in_dim=152, out_dim=8):
11
+ super().__init__()
12
+ self.resize_input = resize_input
13
+ self.out_dim = out_dim
14
+
15
+ self.layers = nn.Sequential(
16
+ nn.Conv2d(in_dim,16,4,2,1),
17
+ nn.SiLU(),
18
+ nn.Conv2d(16,self.out_dim,4,2,1)
19
+ )
20
+
21
+ def forward(self, grounding_extra_input):
22
+
23
+ out = torch.nn.functional.interpolate(grounding_extra_input, (self.resize_input,self.resize_input), mode='nearest')
24
+ out = self.layers(out)
25
+
26
+ assert out.shape[1] == self.out_dim
27
+ return out
28
+
29
+
gligen/ldm/modules/diffusionmodules/sem_grounding_net.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+ from ..attention import SelfAttention, FeedForward
7
+ from .convnext import convnext_tiny
8
+
9
+
10
+
11
+
12
+ class PositionNet(nn.Module):
13
+ def __init__(self, resize_input=448, in_dim=152, out_dim=768):
14
+ super().__init__()
15
+
16
+ self.resize_input = resize_input
17
+ self.down_factor = 32 # determined by the convnext backbone
18
+ self.out_dim = out_dim
19
+ assert self.resize_input % self.down_factor == 0
20
+
21
+ self.in_conv = nn.Conv2d(in_dim,3,3,1,1) # from num_sem to 3 channels
22
+ self.convnext_tiny_backbone = convnext_tiny(pretrained=True)
23
+
24
+ self.num_tokens = (self.resize_input // self.down_factor) ** 2
25
+
26
+ convnext_feature_dim = 768
27
+ self.pos_embedding = nn.Parameter(torch.empty(1, self.num_tokens, convnext_feature_dim).normal_(std=0.02)) # from BERT
28
+
29
+ self.linears = nn.Sequential(
30
+ nn.Linear( convnext_feature_dim, 512),
31
+ nn.SiLU(),
32
+ nn.Linear( 512, 512),
33
+ nn.SiLU(),
34
+ nn.Linear(512, out_dim),
35
+ )
36
+
37
+ self.null_feature = torch.nn.Parameter(torch.zeros([convnext_feature_dim]))
38
+
39
+
40
+ def forward(self, sem, mask):
41
+ B = sem.shape[0]
42
+
43
+ # token from edge map
44
+ sem = torch.nn.functional.interpolate(sem, self.resize_input, mode="nearest")
45
+ sem = self.in_conv(sem)
46
+ sem_feature = self.convnext_tiny_backbone(sem)
47
+ objs = sem_feature.reshape(B, -1, self.num_tokens)
48
+ objs = objs.permute(0, 2, 1) # N*Num_tokens*dim
49
+
50
+ # expand null token
51
+ null_objs = self.null_feature.view(1,1,-1)
52
+ null_objs = null_objs.repeat(B,self.num_tokens,1)
53
+
54
+ # mask replacing
55
+ mask = mask.view(-1,1,1)
56
+ objs = objs*mask + null_objs*(1-mask)
57
+
58
+ # add pos
59
+ objs = objs + self.pos_embedding
60
+
61
+ # fuse them
62
+ objs = self.linears(objs)
63
+
64
+ assert objs.shape == torch.Size([B,self.num_tokens,self.out_dim])
65
+ return objs
66
+
67
+
68
+
gligen/ldm/modules/diffusionmodules/text_grounding_net.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+
7
+
8
+
9
+ class PositionNet(nn.Module):
10
+ def __init__(self, in_dim, out_dim, fourier_freqs=8):
11
+ super().__init__()
12
+ self.in_dim = in_dim
13
+ self.out_dim = out_dim
14
+
15
+ self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
16
+ self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy
17
+
18
+ self.linears = nn.Sequential(
19
+ nn.Linear( self.in_dim + self.position_dim, 512),
20
+ nn.SiLU(),
21
+ nn.Linear( 512, 512),
22
+ nn.SiLU(),
23
+ nn.Linear(512, out_dim),
24
+ )
25
+
26
+ self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.in_dim]))
27
+ self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
28
+
29
+
30
+ def forward(self, boxes, masks, positive_embeddings):
31
+ B, N, _ = boxes.shape
32
+ masks = masks.unsqueeze(-1)
33
+
34
+ # embedding position (it may includes padding as placeholder)
35
+ xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
36
+
37
+ # learnable null embedding
38
+ positive_null = self.null_positive_feature.view(1,1,-1)
39
+ xyxy_null = self.null_position_feature.view(1,1,-1)
40
+
41
+ # replace padding with learnable null embedding
42
+ positive_embeddings = positive_embeddings*masks + (1-masks)*positive_null
43
+ xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null
44
+
45
+ objs = self.linears( torch.cat([positive_embeddings, xyxy_embedding], dim=-1) )
46
+ assert objs.shape == torch.Size([B,N,self.out_dim])
47
+ return objs
48
+
49
+
50
+
gligen/ldm/modules/diffusionmodules/text_image_grounding_net.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from ldm.modules.attention import BasicTransformerBlock
4
+ from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
5
+ import torch.nn.functional as F
6
+
7
+
8
+
9
+ class PositionNet(nn.Module):
10
+ def __init__(self, in_dim, out_dim, fourier_freqs=8):
11
+ super().__init__()
12
+ self.in_dim = in_dim
13
+ self.out_dim = out_dim
14
+
15
+ self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
16
+ self.position_dim = fourier_freqs*2*4 # 2 is sin&cos, 4 is xyxy
17
+
18
+ # -------------------------------------------------------------- #
19
+ self.linears_text = nn.Sequential(
20
+ nn.Linear( self.in_dim + self.position_dim, 512),
21
+ nn.SiLU(),
22
+ nn.Linear( 512, 512),
23
+ nn.SiLU(),
24
+ nn.Linear(512, out_dim),
25
+ )
26
+
27
+ self.linears_image = nn.Sequential(
28
+ nn.Linear( self.in_dim + self.position_dim, 512),
29
+ nn.SiLU(),
30
+ nn.Linear( 512, 512),
31
+ nn.SiLU(),
32
+ nn.Linear(512, out_dim),
33
+ )
34
+
35
+ # -------------------------------------------------------------- #
36
+ self.null_text_feature = torch.nn.Parameter(torch.zeros([self.in_dim]))
37
+ self.null_image_feature = torch.nn.Parameter(torch.zeros([self.in_dim]))
38
+ self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
39
+
40
+
41
+ def forward(self, boxes, masks, text_masks, image_masks, text_embeddings, image_embeddings):
42
+ B, N, _ = boxes.shape
43
+ masks = masks.unsqueeze(-1) # B*N*1
44
+ text_masks = text_masks.unsqueeze(-1) # B*N*1
45
+ image_masks = image_masks.unsqueeze(-1) # B*N*1
46
+
47
+ # embedding position (it may includes padding as placeholder)
48
+ xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
49
+
50
+ # learnable null embedding
51
+ text_null = self.null_text_feature.view(1,1,-1) # 1*1*C
52
+ image_null = self.null_image_feature.view(1,1,-1) # 1*1*C
53
+ xyxy_null = self.null_position_feature.view(1,1,-1) # 1*1*C
54
+
55
+ # replace padding with learnable null embedding
56
+ text_embeddings = text_embeddings*text_masks + (1-text_masks)*text_null
57
+ image_embeddings = image_embeddings*image_masks + (1-image_masks)*image_null
58
+ xyxy_embedding = xyxy_embedding*masks + (1-masks)*xyxy_null
59
+
60
+ objs_text = self.linears_text( torch.cat([text_embeddings, xyxy_embedding], dim=-1) )
61
+ objs_image = self.linears_image( torch.cat([image_embeddings,xyxy_embedding], dim=-1) )
62
+ objs = torch.cat( [objs_text,objs_image], dim=1 )
63
+
64
+ assert objs.shape == torch.Size([B,N*2,self.out_dim])
65
+ return objs
66
+
67
+
68
+
gligen/ldm/modules/diffusionmodules/util.py ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+ import numpy as np
6
+ from einops import repeat
7
+
8
+ from ldm.util import instantiate_from_config
9
+
10
+
11
+
12
+ class FourierEmbedder():
13
+ def __init__(self, num_freqs=64, temperature=100):
14
+
15
+ self.num_freqs = num_freqs
16
+ self.temperature = temperature
17
+ self.freq_bands = temperature ** ( torch.arange(num_freqs) / num_freqs )
18
+
19
+ @ torch.no_grad()
20
+ def __call__(self, x, cat_dim=-1):
21
+ "x: arbitrary shape of tensor. dim: cat dim"
22
+ out = []
23
+ for freq in self.freq_bands:
24
+ out.append( torch.sin( freq*x ) )
25
+ out.append( torch.cos( freq*x ) )
26
+ return torch.cat(out, cat_dim)
27
+
28
+
29
+
30
+ def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
31
+ if schedule == "linear":
32
+ betas = (
33
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
34
+ )
35
+
36
+ elif schedule == "cosine":
37
+ timesteps = (
38
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
39
+ )
40
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
41
+ alphas = torch.cos(alphas).pow(2)
42
+ alphas = alphas / alphas[0]
43
+ betas = 1 - alphas[1:] / alphas[:-1]
44
+ betas = np.clip(betas, a_min=0, a_max=0.999)
45
+
46
+ elif schedule == "sqrt_linear":
47
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
48
+ elif schedule == "sqrt":
49
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
50
+ else:
51
+ raise ValueError(f"schedule '{schedule}' unknown.")
52
+ return betas.numpy()
53
+
54
+
55
+ def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
56
+ if ddim_discr_method == 'uniform':
57
+ c = num_ddpm_timesteps // num_ddim_timesteps
58
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
59
+ elif ddim_discr_method == 'quad':
60
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
61
+ else:
62
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
63
+
64
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
65
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
66
+ steps_out = ddim_timesteps + 1
67
+ if verbose:
68
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
69
+ return steps_out
70
+
71
+
72
+ def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
73
+ # select alphas for computing the variance schedule
74
+ alphas = alphacums[ddim_timesteps]
75
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
76
+
77
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
78
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
79
+ if verbose:
80
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
81
+ print(f'For the chosen value of eta, which is {eta}, '
82
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
83
+ return sigmas, alphas, alphas_prev
84
+
85
+
86
+ def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
87
+ """
88
+ Create a beta schedule that discretizes the given alpha_t_bar function,
89
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
90
+ :param num_diffusion_timesteps: the number of betas to produce.
91
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
92
+ produces the cumulative product of (1-beta) up to that
93
+ part of the diffusion process.
94
+ :param max_beta: the maximum beta to use; use values lower than 1 to
95
+ prevent singularities.
96
+ """
97
+ betas = []
98
+ for i in range(num_diffusion_timesteps):
99
+ t1 = i / num_diffusion_timesteps
100
+ t2 = (i + 1) / num_diffusion_timesteps
101
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
102
+ return np.array(betas)
103
+
104
+
105
+ def extract_into_tensor(a, t, x_shape):
106
+ b, *_ = t.shape
107
+ out = a.gather(-1, t)
108
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
109
+
110
+
111
+ def checkpoint(func, inputs, params, flag):
112
+ """
113
+ Evaluate a function without caching intermediate activations, allowing for
114
+ reduced memory at the expense of extra compute in the backward pass.
115
+ :param func: the function to evaluate.
116
+ :param inputs: the argument sequence to pass to `func`.
117
+ :param params: a sequence of parameters `func` depends on but does not
118
+ explicitly take as arguments.
119
+ :param flag: if False, disable gradient checkpointing.
120
+ """
121
+ if flag:
122
+ args = tuple(inputs) + tuple(params)
123
+ return CheckpointFunction.apply(func, len(inputs), *args)
124
+ else:
125
+ return func(*inputs)
126
+
127
+
128
+ class CheckpointFunction(torch.autograd.Function):
129
+ @staticmethod
130
+ def forward(ctx, run_function, length, *args):
131
+ ctx.run_function = run_function
132
+ ctx.input_tensors = list(args[:length])
133
+ ctx.input_params = list(args[length:])
134
+
135
+ with torch.no_grad():
136
+ output_tensors = ctx.run_function(*ctx.input_tensors)
137
+ return output_tensors
138
+
139
+ @staticmethod
140
+ def backward(ctx, *output_grads):
141
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
142
+ with torch.enable_grad():
143
+ # Fixes a bug where the first op in run_function modifies the
144
+ # Tensor storage in place, which is not allowed for detach()'d
145
+ # Tensors.
146
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
147
+ output_tensors = ctx.run_function(*shallow_copies)
148
+ input_grads = torch.autograd.grad(
149
+ output_tensors,
150
+ ctx.input_tensors + ctx.input_params,
151
+ output_grads,
152
+ allow_unused=True,
153
+ )
154
+ del ctx.input_tensors
155
+ del ctx.input_params
156
+ del output_tensors
157
+ return (None, None) + input_grads
158
+
159
+
160
+ def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
161
+ """
162
+ Create sinusoidal timestep embeddings.
163
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
164
+ These may be fractional.
165
+ :param dim: the dimension of the output.
166
+ :param max_period: controls the minimum frequency of the embeddings.
167
+ :return: an [N x dim] Tensor of positional embeddings.
168
+ """
169
+ if not repeat_only:
170
+ half = dim // 2
171
+ freqs = torch.exp(
172
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
173
+ ).to(device=timesteps.device)
174
+ args = timesteps[:, None].float() * freqs[None]
175
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
176
+ if dim % 2:
177
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
178
+ else:
179
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
180
+ return embedding
181
+
182
+
183
+ def zero_module(module):
184
+ """
185
+ Zero out the parameters of a module and return it.
186
+ """
187
+ for p in module.parameters():
188
+ p.detach().zero_()
189
+ return module
190
+
191
+
192
+ def scale_module(module, scale):
193
+ """
194
+ Scale the parameters of a module and return it.
195
+ """
196
+ for p in module.parameters():
197
+ p.detach().mul_(scale)
198
+ return module
199
+
200
+
201
+ def mean_flat(tensor):
202
+ """
203
+ Take the mean over all non-batch dimensions.
204
+ """
205
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
206
+
207
+
208
+ def normalization(channels):
209
+ """
210
+ Make a standard normalization layer.
211
+ :param channels: number of input channels.
212
+ :return: an nn.Module for normalization.
213
+ """
214
+ return GroupNorm32(32, channels)
215
+
216
+
217
+ # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
218
+ class SiLU(nn.Module):
219
+ def forward(self, x):
220
+ return x * torch.sigmoid(x)
221
+
222
+
223
+ class GroupNorm32(nn.GroupNorm):
224
+ def forward(self, x):
225
+ return super().forward(x.float()).type(x.dtype)
226
+ #return super().forward(x).type(x.dtype)
227
+
228
+ def conv_nd(dims, *args, **kwargs):
229
+ """
230
+ Create a 1D, 2D, or 3D convolution module.
231
+ """
232
+ if dims == 1:
233
+ return nn.Conv1d(*args, **kwargs)
234
+ elif dims == 2:
235
+ return nn.Conv2d(*args, **kwargs)
236
+ elif dims == 3:
237
+ return nn.Conv3d(*args, **kwargs)
238
+ raise ValueError(f"unsupported dimensions: {dims}")
239
+
240
+
241
+ def linear(*args, **kwargs):
242
+ """
243
+ Create a linear module.
244
+ """
245
+ return nn.Linear(*args, **kwargs)
246
+
247
+
248
+ def avg_pool_nd(dims, *args, **kwargs):
249
+ """
250
+ Create a 1D, 2D, or 3D average pooling module.
251
+ """
252
+ if dims == 1:
253
+ return nn.AvgPool1d(*args, **kwargs)
254
+ elif dims == 2:
255
+ return nn.AvgPool2d(*args, **kwargs)
256
+ elif dims == 3:
257
+ return nn.AvgPool3d(*args, **kwargs)
258
+ raise ValueError(f"unsupported dimensions: {dims}")
259
+
260
+
261
+ class HybridConditioner(nn.Module):
262
+
263
+ def __init__(self, c_concat_config, c_crossattn_config):
264
+ super().__init__()
265
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
266
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
267
+
268
+ def forward(self, c_concat, c_crossattn):
269
+ c_concat = self.concat_conditioner(c_concat)
270
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
271
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
272
+
273
+
274
+ def noise_like(shape, device, repeat=False):
275
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
276
+ noise = lambda: torch.randn(shape, device=device)
277
+ return repeat_noise() if repeat else noise()
gligen/ldm/modules/distributions/__init__.py ADDED
File without changes