Spaces:
Running
Running
File size: 27,702 Bytes
9c398de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
import html
import logging
import re
from typing import List
from farasa.segmenter import FarasaSegmenter
import emoji
import pyarabic.araby as araby
ACCEPTED_MODELS = [
"bert-base-arabertv01",
"bert-base-arabert",
"bert-base-arabertv02",
"bert-base-arabertv2",
"bert-large-arabertv02",
"bert-large-arabertv2",
"araelectra-base",
"araelectra-base-discriminator",
"araelectra-base-generator",
"araelectra-base-artydiqa",
"aragpt2-base",
"aragpt2-medium",
"aragpt2-large",
"aragpt2-mega",
]
SEGMENTED_MODELS = [
"bert-base-arabert",
"bert-base-arabertv2",
"bert-large-arabertv2",
]
SECOND_GEN_MODELS = [
"bert-base-arabertv02",
"bert-base-arabertv2",
"bert-large-arabertv02",
"bert-large-arabertv2",
"araelectra-base",
"araelectra-base-discriminator",
"araelectra-base-generator",
"araelectra-base-artydiqa",
"aragpt2-base",
"aragpt2-medium",
"aragpt2-large",
"aragpt2-mega",
]
farasa_segmenter = FarasaSegmenter(interactive=True)
class ArabertPreprocessor:
"""
A Preprocessor class that cleans and preprocesses text for all models in the AraBERT repo.
It also can unprocess the text ouput of the generated text
Args:
model_name (:obj:`str`): model name from the HuggingFace Models page without
the aubmindlab tag. Will default to a base Arabic preprocessor if model name was not found.
Current accepted models are:
- "bert-base-arabertv01": No farasa segmentation.
- "bert-base-arabert": with farasa segmentation.
- "bert-base-arabertv02": No farasas egmentation.
- "bert-base-arabertv2": with farasa segmentation.
- "bert-large-arabertv02": No farasas egmentation.
- "bert-large-arabertv2": with farasa segmentation.
- "araelectra-base": No farasa segmentation.
- "araelectra-base-discriminator": No farasa segmentation.
- "araelectra-base-generator": No farasa segmentation.
- "aragpt2-base": No farasa segmentation.
- "aragpt2-medium": No farasa segmentation.
- "aragpt2-large": No farasa segmentation.
- "aragpt2-mega": No farasa segmentation.
keep_emojis(:obj:`bool`, `optional`, defaults to :obj:`False`): don't remove emojis while preprocessing.
remove_html_markup(:obj: `bool`, `optional`, defaults to :obj:`True`): Whether to remove html artfacts,
should be set to False when preprocessing TyDi QA.
replace_urls_emails_mentions(:obj:`bool`, `optional`, defaults to :obj:`True`): Whether to replace email urls
and mentions by special tokens.
strip_tashkeel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove diacritics (FATHATAN, DAMMATAN, KASRATAN, FATHA, DAMMA,
KASRA, SUKUN, SHADDA).
strip_tatweel(:obj:`bool`, `optional`, defaults to :obj:`True`): remove tatweel '\\u0640'.
insert_white_spaces(:obj:`bool`, `optional`, defaults to :obj:`True`): insert whitespace before and after all non Arabic digits
or English digits or Arabic and English Alphabet or the 2 brackets, then inserts whitespace
between words and numbers or numbers and words.
remove_non_digit_repetition(:obj:`bool`, `optional`, defaults to :obj:`True`): replace repetition of more than 2 non-digit character with
2 of this character.
replace_slash_with_dash(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in AraBERTv02,
AraELECTRA and AraGPT2.
Set to False to force disable, and True to force enable. Replaces the "/" with "-",
since "/" is missing from AraBERTv2, AraELECTRA and ARAGPT2 vocabulary.
map_hindi_numbers_to_arabic(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
AraBERTv02, AraELECTRA and AraGPT2.Set to False to force disable, and True to force enable.
Replaces hindi numbers with the corresponding Arabic one. ex: "١٩٩٥" --> "1995".
This is behavior is present by default in AraBERTv1 and v2 (with pre-segmentation),
and fixes the issue of caused by a bug when inserting white spaces.
apply_farasa_segmentation(:obj:`bool`, `optional`, defaults to :obj:`None`): Will be automatically set to True in
AraBERTv2, and AraBERTv1. Set to False to force disable, and True to force enable.
Returns:
ArabertPreprocessor: A preprocessor instance
Example:
from preprocess import ArabertPreprocessor
arabert_prep = ArabertPreprocessor("aubmindlab/bert-base-arabertv2")
arabert_prep.preprocess("SOME ARABIC TEXT")
"""
def __init__(
self,
model_name: str,
keep_emojis: bool = False,
remove_html_markup: bool = True,
replace_urls_emails_mentions: bool = True,
strip_tashkeel: bool = True,
strip_tatweel: bool = True,
insert_white_spaces: bool = True,
remove_non_digit_repetition: bool = True,
replace_slash_with_dash: bool = None,
map_hindi_numbers_to_arabic: bool = None,
apply_farasa_segmentation: bool = None,
):
model_name = model_name.replace("aubmindlab/", "").replace("wissamantoun/", "")
if model_name not in ACCEPTED_MODELS:
logging.warning(
"""Model provided is not in the accepted model list. Preprocessor will default to a base Arabic preprocessor"""
)
self.model_name = "bert-base-arabertv02"
else:
self.model_name = model_name
if apply_farasa_segmentation is None:
if self.model_name in SEGMENTED_MODELS:
self.apply_farasa_segmentation = True
else:
self.apply_farasa_segmentation = False
else:
if (
apply_farasa_segmentation == False
and self.model_name in SEGMENTED_MODELS
):
logging.warning(
"The selected model_name requires Farasa pre-segmentation, but apply_farasa_segmentation was set to False!"
)
self.apply_farasa_segmentation = apply_farasa_segmentation
self.keep_emojis = keep_emojis
self.remove_html_markup = remove_html_markup
self.replace_urls_emails_mentions = replace_urls_emails_mentions
self.strip_tashkeel = strip_tashkeel
self.strip_tatweel = strip_tatweel
self.insert_white_spaces = insert_white_spaces
self.remove_non_digit_repetition = remove_non_digit_repetition
if replace_slash_with_dash is None:
if self.model_name in SECOND_GEN_MODELS:
self.replace_slash_with_dash = True
else:
self.replace_slash_with_dash = False
else:
self.replace_slash_with_dash = replace_slash_with_dash
if map_hindi_numbers_to_arabic is None:
if self.model_name in SECOND_GEN_MODELS:
self.map_hindi_numbers_to_arabic = True
else:
self.map_hindi_numbers_to_arabic = False
else:
self.map_hindi_numbers_to_arabic = map_hindi_numbers_to_arabic
def preprocess(self, text: str) -> str:
"""
Preprocess takes an input text line an applies the same preprocessing used in AraBERT
pretraining, or according to settings
Args:
text (:obj:`str`): inout text string
Returns:
string: A preprocessed string depending on which model was selected
"""
if (
self.model_name == "bert-base-arabert"
or self.model_name == "bert-base-arabertv01"
):
return self._preprocess_v1(
text,
do_farasa_tokenization=self.apply_farasa_segmentation,
)
if self.model_name in SECOND_GEN_MODELS:
return self._preprocess_v2(text)
return self._preprocess_v3(text)
def unpreprocess(self, text: str, desegment: bool = True) -> str:
"""Re-formats the text to a classic format where punctuations, brackets, parenthesis are not seperated by whitespaces.
The objective is to make the generated text of any model appear natural and not preprocessed.
Args:
text (:obj:`str`): input text to be un-preprocessed
desegment (:obj:`bool`, optional): [whether or not to remove farasa pre-segmentation before]..
Returns:
str: The unpreprocessed (and possibly Farasa-desegmented) text.
"""
if self.apply_farasa_segmentation and desegment:
text = self.desegment(text)
# removes the spaces around quotation marks ex: i " ate " an apple --> i "ate" an apple
# https://stackoverflow.com/a/53436792/5381220
text = re.sub(white_spaced_double_quotation_regex, '"' + r"\1" + '"', text)
text = re.sub(white_spaced_single_quotation_regex, "'" + r"\1" + "'", text)
text = re.sub(white_spaced_back_quotation_regex, "\`" + r"\1" + "\`", text)
text = re.sub(white_spaced_back_quotation_regex, "\—" + r"\1" + "\—", text)
# during generation, sometimes the models don't put a space after the dot, this handles it
text = text.replace(".", " . ")
text = " ".join(text.split())
# handle decimals
text = re.sub(r"(\d+) \. (\d+)", r"\1.\2", text)
text = re.sub(r"(\d+) \, (\d+)", r"\1,\2", text)
text = re.sub(left_and_right_spaced_chars, r"\1", text)
text = re.sub(left_spaced_chars, r"\1", text)
text = re.sub(right_spaced_chars, r"\1", text)
return text
def desegment(self, text: str) -> str:
"""
Use this function if sentence tokenization was done using
`from arabert.preprocess_arabert import preprocess` with Farasa enabled
AraBERT segmentation using Farasa adds a space after the '+' for prefixes,
and after before the '+' for suffixes
Example:
>>> desegment('ال+ دراس +ات')
الدراسات
"""
text = text.replace("+ ", "+")
text = text.replace(" +", "+")
text = " ".join([self._desegmentword(word) for word in text.split(" ")])
return text
def _desegmentword(self, orig_word: str) -> str:
"""
Word segmentor that takes a Farasa Segmented Word and removes the '+' signs
Example:
>>> _desegmentword("ال+يومي+ة")
اليومية
"""
word = orig_word.replace("ل+ال+", "لل")
if "ال+ال" not in orig_word:
word = word.replace("ل+ال", "لل")
word = word.replace("+", "")
word = word.replace("للل", "لل")
return word
def _preprocess_v3(self, text: str) -> str:
text = str(text)
text = html.unescape(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
if self.strip_tatweel:
text = araby.strip_tatweel(text)
if self.replace_urls_emails_mentions:
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " [رابط] ", text)
# REplace Emails with [بريد]
for reg in email_regexes:
text = re.sub(reg, " [بريد] ", text)
# replace mentions with [مستخدم]
text = re.sub(user_mention_regex, " [مستخدم] ", text)
if self.remove_html_markup:
# remove html line breaks
text = re.sub("<br />", " ", text)
# remove html markup
text = re.sub("</?[^>]+>", " ", text)
if self.map_hindi_numbers_to_arabic:
text = text.translate(hindi_to_arabic_map)
# remove repeated characters >2
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z ])",
r" \1 ",
text,
)
# re-fix brackets
text = text.replace("[ رابط ]", "[رابط]")
text = text.replace("[ بريد ]", "[بريد]")
text = text.replace("[ مستخدم ]", "[مستخدم]")
# insert whitespace between words and numbers or numbers and words
text = re.sub(
"(\d+)([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)",
r" \1 \2 ",
text,
)
text = re.sub(
"([\u0621-\u063A\u0641-\u064A\u066A-\u066C\u0654-\u0655]+)(\d+)",
r" \1 \2 ",
text,
)
# remove unwanted characters
if self.keep_emojis:
emoji_regex = "".join(list(emoji.UNICODE_EMOJI["en"].keys()))
rejected_chars_regex2 = "[^%s%s]" % (chars_regexv2, emoji_regex)
text = re.sub(rejected_chars_regex2, " ", text)
else:
text = re.sub(rejected_chars_regexv2, " ", text)
# remove extra spaces
text = " ".join(text.replace("\uFE0F", "").split())
if self.apply_farasa_segmentation:
if self.keep_emojis:
new_text = []
for word in text.split():
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
new_text.append(word)
else:
new_text.append(farasa_segmenter.segment(word))
text = " ".join(new_text)
else:
text = farasa_segmenter.segment(text)
return self._farasa_segment(text)
# ALl the other models dont require Farasa Segmentation
return text
def _preprocess_v2(self, text: str) -> str:
text = str(text)
text = html.unescape(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
if self.strip_tatweel:
text = araby.strip_tatweel(text)
if self.replace_urls_emails_mentions:
# replace all possible URLs
for reg in url_regexes:
text = re.sub(reg, " [رابط] ", text)
# REplace Emails with [بريد]
for reg in email_regexes:
text = re.sub(reg, " [بريد] ", text)
# replace mentions with [مستخدم]
text = re.sub(user_mention_regex, " [مستخدم] ", text)
if self.remove_html_markup:
# remove html line breaks
text = re.sub("<br />", " ", text)
# remove html markup
text = re.sub("</?[^>]+>", " ", text)
if self.map_hindi_numbers_to_arabic:
text = text.translate(hindi_to_arabic_map)
# remove repeated characters >2
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u064A\u0660-\u0669a-zA-Z\[\]])",
r" \1 ",
text,
)
# insert whitespace between words and numbers or numbers and words
text = re.sub(
"(\d+)([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)", r" \1 \2 ", text
)
text = re.sub(
"([\u0621-\u063A\u0641-\u064A\u0660-\u066C]+)(\d+)", r" \1 \2 ", text
)
if self.replace_slash_with_dash:
text = text.replace("/", "-")
# remove unwanted characters
if self.keep_emojis:
emoji_regex = "".join(list(emoji.UNICODE_EMOJI["en"].keys()))
rejected_chars_regex2 = "[^%s%s]" % (chars_regex, emoji_regex)
text = re.sub(rejected_chars_regex2, " ", text)
else:
text = re.sub(rejected_chars_regex, " ", text)
# remove extra spaces
text = " ".join(text.replace("\uFE0F", "").split())
if (
self.model_name == "bert-base-arabertv2"
or self.model_name == "bert-large-arabertv2"
):
if self.keep_emojis:
new_text = []
for word in text.split():
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
new_text.append(word)
else:
new_text.append(farasa_segmenter.segment(word))
text = " ".join(new_text)
else:
text = farasa_segmenter.segment(text)
return self._farasa_segment(text)
# ALl the other models dont require Farasa Segmentation
return text
def _preprocess_v1(self, text: str, do_farasa_tokenization: bool) -> str:
"""
AraBERTv1 preprocessing Function
"""
text = str(text)
if self.strip_tashkeel:
text = araby.strip_tashkeel(text)
text = re.sub(r"\d+\/[ء-ي]+\/\d+\]", "", text)
text = re.sub("ـ", "", text)
text = re.sub("[«»]", ' " ', text)
if self.replace_urls_emails_mentions:
# replace the [رابط] token with space if you want to clean links
text = re.sub(regex_url_step1, "[رابط]", text)
text = re.sub(regex_url_step2, "[رابط]", text)
text = re.sub(regex_url, "[رابط]", text)
text = re.sub(regex_email, "[بريد]", text)
text = re.sub(regex_mention, "[مستخدم]", text)
text = re.sub("…", r"\.", text).strip()
text = self._remove_redundant_punct(text)
if self.replace_urls_emails_mentions:
text = re.sub(r"\[ رابط \]|\[ رابط\]|\[رابط \]", " [رابط] ", text)
text = re.sub(r"\[ بريد \]|\[ بريد\]|\[بريد \]", " [بريد] ", text)
text = re.sub(r"\[ مستخدم \]|\[ مستخدم\]|\[مستخدم \]", " [مستخدم] ", text)
if self.remove_non_digit_repetition:
text = self._remove_non_digit_repetition(text)
if self.insert_white_spaces:
text = re.sub(
"([^0-9\u0621-\u063A\u0641-\u0669\u0671-\u0673a-zA-Z\[\]])",
r" \1 ",
text,
)
if do_farasa_tokenization:
text = self._tokenize_arabic_words_farasa(text)
text = " ".join(text.split())
return text
def _farasa_segment(self, text: str) -> str:
line_farasa = text.split()
segmented_line = []
for index, word in enumerate(line_farasa):
if word in ["[", "]"]:
continue
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
"[",
"]",
]:
segmented_line.append("[" + word + "]")
continue
if "+" not in word:
segmented_line.append(word)
continue
segmented_word = self._split_farasa_output(word)
segmented_line.extend(segmented_word)
return " ".join(segmented_line)
def _split_farasa_output(self, word: str) -> str:
segmented_word = []
temp_token = ""
for i, c in enumerate(word):
if c == "+":
# if the token is KAF, it could be a suffix or prefix
if temp_token == "ك":
# if we are at the second token, then KAF is surely a prefix
if i == 1:
segmented_word.append(temp_token + "+")
temp_token = ""
# If the KAF token is between 2 tokens
elif word[i - 2] == "+":
# if the previous token is prefix, then this KAF must be a prefix
if segmented_word[-1][-1] == "+":
segmented_word.append(temp_token + "+")
temp_token = ""
# else it is a suffix, this KAF could not be a second suffix
else:
segmented_word.append("+" + temp_token)
temp_token = ""
# if Kaf is at the end, this is handled with the statement after the loop
elif temp_token in prefix_list:
segmented_word.append(temp_token + "+")
temp_token = ""
elif temp_token in suffix_list:
segmented_word.append("+" + temp_token)
temp_token = ""
else:
segmented_word.append(temp_token)
temp_token = ""
continue
temp_token += c
if temp_token != "":
if temp_token in suffix_list:
segmented_word.append("+" + temp_token)
else:
segmented_word.append(temp_token)
return segmented_word
def _tokenize_arabic_words_farasa(self, line_input: str) -> str:
if self.keep_emojis:
# insert whitespace before and after all non Arabic digits or English Digits and Alphabet and the 2 brackets
line_farasa = []
for word in line_input.split():
if word in list(emoji.UNICODE_EMOJI["en"].keys()):
line_farasa.append(word)
else:
line_farasa.append(farasa_segmenter.segment(word))
else:
line_farasa = farasa_segmenter.segment(line_input).split()
segmented_line = []
for index, word in enumerate(line_farasa):
if word in ["[", "]"]:
continue
if word in ["رابط", "بريد", "مستخدم"] and line_farasa[index - 1] in [
"[",
"]",
]:
segmented_line.append("[" + word + "]")
continue
segmented_word = []
for token in word.split("+"):
if token in prefix_list:
segmented_word.append(token + "+")
elif token in suffix_list:
segmented_word.append("+" + token)
else:
segmented_word.append(token)
segmented_line.extend(segmented_word)
return " ".join(segmented_line)
def _remove_non_digit_repetition(self, text: str) -> str:
"""
:param text: the input text to remove elongation
:return: delongated text
"""
# loop over the number of times the regex matched the text
# OLD
# for index_ in range(len(re.findall(regex_tatweel, text))):
# elongation = re.search(regex_tatweel, text)
# if elongation:
# elongation_pattern = elongation.group()
# elongation_replacement = elongation_pattern[0]
# elongation_pattern = re.escape(elongation_pattern)
# text = re.sub(
# elongation_pattern, elongation_replacement, text, flags=re.MULTILINE
# )
# else:
# break
# New
text = multiple_char_pattern.sub(r"\1\1", text)
return text
def _remove_redundant_punct(self, text: str) -> str:
text_ = text
result = re.search(redundant_punct_pattern, text)
dif = 0
while result:
sub = result.group()
sub = sorted(set(sub), key=sub.index)
sub = " " + "".join(list(sub)) + " "
text = "".join(
(text[: result.span()[0] + dif], sub, text[result.span()[1] + dif :])
)
text_ = "".join(
(text_[: result.span()[0]], text_[result.span()[1] :])
).strip()
dif = abs(len(text) - len(text_))
result = re.search(redundant_punct_pattern, text_)
text = re.sub(r"\s+", " ", text)
return text.strip()
prefix_list = [
"ال",
"و",
"ف",
"ب",
"ك",
"ل",
"لل",
"\u0627\u0644",
"\u0648",
"\u0641",
"\u0628",
"\u0643",
"\u0644",
"\u0644\u0644",
"س",
]
suffix_list = [
"ه",
"ها",
"ك",
"ي",
"هما",
"كما",
"نا",
"كم",
"هم",
"هن",
"كن",
"ا",
"ان",
"ين",
"ون",
"وا",
"ات",
"ت",
"ن",
"ة",
"\u0647",
"\u0647\u0627",
"\u0643",
"\u064a",
"\u0647\u0645\u0627",
"\u0643\u0645\u0627",
"\u0646\u0627",
"\u0643\u0645",
"\u0647\u0645",
"\u0647\u0646",
"\u0643\u0646",
"\u0627",
"\u0627\u0646",
"\u064a\u0646",
"\u0648\u0646",
"\u0648\u0627",
"\u0627\u062a",
"\u062a",
"\u0646",
"\u0629",
]
other_tokens = ["[رابط]", "[مستخدم]", "[بريد]"]
# the never_split list is ussed with the transformers library
prefix_symbols = [x + "+" for x in prefix_list]
suffix_symblos = ["+" + x for x in suffix_list]
never_split_tokens = list(set(prefix_symbols + suffix_symblos + other_tokens))
url_regexes = [
r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)",
r"@(https?|ftp)://(-\.)?([^\s/?\.#-]+\.?)+(/[^\s]*)?$@iS",
r"http[s]?://[a-zA-Z0-9_\-./~\?=%&]+",
r"www[a-zA-Z0-9_\-?=%&/.~]+",
r"[a-zA-Z]+\.com",
r"(?=http)[^\s]+",
r"(?=www)[^\s]+",
r"://",
]
user_mention_regex = r"@[\w\d]+"
email_regexes = [r"[\w-]+@([\w-]+\.)+[\w-]+", r"\S+@\S+"]
redundant_punct_pattern = (
r"([!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ【»؛\s+«–…‘]{2,})"
)
regex_tatweel = r"(\D)\1{2,}"
multiple_char_pattern = re.compile(r"(\D)\1{2,}", re.DOTALL)
rejected_chars_regex = r"[^0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘]"
rejected_chars_regexv2 = r"[^0-9\u0621-\u063A\u0641-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/]"
regex_url_step1 = r"(?=http)[^\s]+"
regex_url_step2 = r"(?=www)[^\s]+"
regex_url = r"(http(s)?:\/\/.)?(www\.)?[-a-zA-Z0-9@:%._\+~#=]{2,256}\.[a-z]{2,6}\b([-a-zA-Z0-9@:%_\+.~#?&//=]*)"
regex_mention = r"@[\w\d]+"
regex_email = r"\S+@\S+"
chars_regex = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘"
chars_regexv2 = r"0-9\u0621-\u063A\u0640-\u066C\u0671-\u0674a-zA-Z\[\]!\"#\$%\'\(\)\*\+,\.:;\-<=·>?@\[\\\]\^_ـ`{\|}~—٪’،؟`୍“؛”ۚ»؛\s+«–…‘/"
white_spaced_double_quotation_regex = r'\"\s+([^"]+)\s+\"'
white_spaced_single_quotation_regex = r"\'\s+([^']+)\s+\'"
white_spaced_back_quotation_regex = r"\`\s+([^`]+)\s+\`"
white_spaced_em_dash = r"\—\s+([^—]+)\s+\—"
left_spaced_chars = r" ([\]!#\$%\),\.:;\?}٪’،؟”؛…»·])"
right_spaced_chars = r"([\[\(\{“«‘*\~]) "
left_and_right_spaced_chars = r" ([\+\-\<\=\>\@\\\^\_\|\–]) "
hindi_nums = "٠١٢٣٤٥٦٧٨٩"
arabic_nums = "0123456789"
hindi_to_arabic_map = str.maketrans(hindi_nums, arabic_nums)
|